the diagonals of a parallelogram ABCD intersect at o. A line through O intersects AB at X and DC at Y prove that OX=OY
Answers
Answer:
⇒ In given figure ABCD is a parallelogram.
∴ AB∥DC
⇒ Also AC is a transversal of AB∥DC.
∴ ∠1=∠2 [Alternate interior angles]
⇒ Now in △AXO and △CYO, we have
⇒ ∠1=∠2 [Alternate interior angles]
⇒ ∠3=∠4 [Vertically opposite angles]
⇒ CO=OA [Diagonals bisect each other]
∴ △AXO≅△CYO [ASA Criteria]
∴ OX=OY [CPCT]
Step-by-step explanation:
⇒ In given figure ABCD is a parallelogram.
∴ AB∥DC
⇒ Also AC is a transversal of AB∥DC.
∴ ∠1=∠2 [Alternate interior angles]
⇒ Now in △AXO and △CYO, we have
⇒ ∠1=∠2 [Alternate interior angles]
⇒ ∠3=∠4 [Vertically opposite angles]
⇒ CO=OA [Diagonals bisect each other]
∴ △AXO≅△CYO [ASA Criteria]
∴ OX=OY [CPCT]