Math, asked by khushijain2076, 11 months ago

The diagonals of a rectangle ABCD intersect at O. If angle AOD=50°, find angle OCD

Answers

Answered by zoya1550
13

Answer:

=57°

Step-by-step explanation:

we know that, Diagonal of rectangle are equal and bisect to each other

AC=DB

½AC=½DB

AO=BO

ang OAB=OBA

In triangle AOB

Let ang OAB=OBA=x

x+114+x=180°

or 2x=180-114

or 2x=66

x=66/2

x=33

we know that opposite side of rectangle are parallel to each other

ang OAB= ang ACD. (alternate angle)

ACD=33

BOC=180-114=66°

ACB=90-33=57

CBO=180-66+57

CBO=180-123

CBO=57

AB Parallel DC

CBO= ADB=57° ans

Answered by jaswasri2006
152

Correct Question :-

The diagonals of a rectangle ABCD intersect at O. If angle AOD=50°, find angle OCD .

Answer :-

we know that , diagonal of rectangle are equal are bisect to each other

AC = BD

½AC = ½BD

AO = BO

OAB = OBA

In AOB ,

OAB = OBA = x

x + 114 + x = 180 \\  \\

2x = 180 - 114 \\  \\

2x = 66 \\  \\

x =  \frac{66}{2}  \\  \\

x = 33

OAB = ACD . [ Alternate angle ]

ACD = 33°

BOC \:  = 180 - 114 \\  \\

BOC = 66

ACB = 90 - 33 = 57 \\  \\

CBO  = 180 - 66 + 57 = 171

AB//BC

CBO = ADB = 171°

HOPE THIS WILL HELP U

MARK AS BRAINLIEST ANSWER PLEASE MY FRIEND

Similar questions