Math, asked by archie7785, 15 days ago

the diagonals of a rhombus are 26 and 10cm. find the length of one side of a rhombus.​

Answers

Answered by iamqueen1
607

 \huge\underbrace\mathbf\pink{Answer}

Let ABCD be the rhombus

Where,

  • AC = 10cm

  • BD = 24cm

Let AC and BD intersect each other at O.

Now, diagonals of rhombus bisect each other at right angles.

Thus, we have

{ \bf{\sf \: AO =  \frac{1}{2}  \times AC }} \\  \\

   \red\rightarrow{\bf {\sf \:  \frac{1}{2}  \times 10 = 5 \: cm}} \\

{ \bf{\sf \: BO= \frac{1}{2}  \times BD}} \\  \\

  \red\rightarrow{ \bf{\sf \: \frac{1}{2}  \times 24 = 12 \: cm}} \\

In right angled △AOB

 { \bf{\sf \:( {AB)</p><p>}^{2}  =(AO)²+ (BO)²}} \\  \\

{ \bf{\sf \:( {AB)</p><p>}^{2}  =(5) ²+ (12) ²}}\\  \\

{\bf{\sf \:( {AB)</p><p>}^{2}  = 25 + 144}} \\  \\

\bf{\sf \:( {AB)</p><p>}^{2}  = 169} \\  \\

\bold\red{AB = 13  \: cm} \\  \\

∴ The length of each side of rhombus is 13cm.

Answered by MarsalaMagic
1558

Answer:

 \sqrt{194}

Step-by-step explanation:

We know that,

the diagonals of rhombus bisect each other at 90°.

Thus,

 \pink{ad =  \frac{1}{2}  \times ac} =  \frac{1}{2}  \times 10 = 5cm

 \red{bd =  \frac{1}{2}  \times bd } =  \frac{1}{2}  \times 26 = 13cm

Therefore,

AoB is a right angled triangle by thearem,we have.

AB² = AD² + BD²

AB² = 5² + 13²

AB² = 25 + 169

AB² = 194²

AB² = √194

HENCE, THE LENGTH OF ONE SIDE OF RHOMBUS IS 194

Attachments:
Similar questions