Math, asked by Anonymous, 1 month ago

the diagonals of a rhombus are 30 cm and 16 cm find its perimeter​

Answers

Answered by swasthipatle
2

Answer:

Hope this will help you

Attachments:
Answered by Anonymous
4

Given:

  • The diagonals of a rhombus are 30 cm and 16 cm find its perimeter.

Diagram:

  • Refer to the attachment please

Solution:

  • We know that diagonals of a rhombus bisect each other at right angles.

Let ABCD be a rhombus and AC, BD be it's two diagonals, where:

  • AC = 30 cm

  • BD = 16 cm

Let the two diagonals bisect each other at E.

Then,

  • ∠BEC = 90°

  • EC = 15 cm

  • EB = 8 cm

In right angled BEC,

 \\ \bf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: BC {}^{2}  = BE  {}^{2} + EC  {}^{2} \\ \implies \:  \: \:  \:  \:   \:  \:  \:  \sf \: BC {}^{2}  = (8 + 15) {}^{2}  cm \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \implies \ \sf \: \:  \:  \:  \:  \:  \:  \:  \: \: \: BC {}^{2}  = (64+225)  {}^{2} cm {}^{2}   \\ \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: \: BC {}^{2}  = 289cm {}^{2}  \\  \implies \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \sf \:BC {}^{2}  = (17)  {}^{2} cm \\  \implies \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \sf \:BC {}^{}  = 17 cm \\  \\

In a rhombus, all sides are if equal lengths.

   \\ \therefore  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm \: Perimeter  \: of \:  rhombus = 4 × side  \: of \: rhombus \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  = (4 \times 17) cm\\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \  \:  \:  \:  \:  \:  \:  \:  \  \sf \:  = 68 \: cm

{ \underline{ \underline{ \boldsymbol{ \bigstar{ \pink{\:Hence,  \: The \:  perimeter  \: of  \: rhombus  \: is  \: 68 cm.}}}}}}

Attachments:
Similar questions