CBSE BOARD X, asked by Anonymous, 5 months ago

The diagonals of a rhombus are in ratio 3:4 if the longer diagonal is 12cm then find the are of rhombus​

Answers

Answered by Anonymous
45

Answer:

{\large{\underline{\underline{\bf{Given: -}}}}}

  • ↝ The diagonals of a rhombus are in ratio 3:4.
  • ↝ The longer diagonal is 12cm

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{To  \: Find: -}}}}}

  • ↝ The area of rhombus

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Using  \: Formula: -}}}}}

\bigstar{\underline{\boxed{\bf{\purple{Area\:of\:rhombus=\dfrac{1}{2}\times{d_1}\times{d_2}}}}}}

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Solution: -}}}}}

\green\bigstar Let the,

  • ↠ The smaller diognal of rhombus = 3x
  • ↠ The longer diagonal of rhombus = 4x

\begin{gathered}\end{gathered}

\green\bigstar Now, According to the question

 \dashrightarrow{\sf{4x = longer \:  diagonal }}

 \dashrightarrow{\sf{4x =12 }}

 \dashrightarrow{\sf{x = \dfrac{12}{4}}}

 \dashrightarrow{\sf{x =  {\cancel{\dfrac{12}{4}}}}}

 \dashrightarrow{\sf{x = 3}}

\bigstar\red{\underline{\boxed{\bf{x = 3}}}}

The value of x is 3.

\begin{gathered}\end{gathered}

\green\bigstar Finding the longer diagonal of rhombus :-

{\dashrightarrow{\sf{Longer  \: diagonal  \: of  \: rhombus  = 4x}}}

{\dashrightarrow{\sf{Longer  \: diagonal  \: of  \: rhombus  = 4  \times 3}}}

{\dashrightarrow{\sf{Longer  \: diagonal  \: of  \: rhombus  = 12 \: cm}}}

\bigstar{\red{\underline{\boxed{\bf{Longer  \: diagonal  \: of  \: rhombus  = 12 \: cm}}}}}

The longer diagonal of rhombus is 12 cm.

\begin{gathered}\end{gathered}

\green\bigstar Finding the smaller diognal of rhombus :-

 \dashrightarrow\sf{Smaller  \: diognal  \: of \:  rhombus = 3x}

{\dashrightarrow{\sf{Smaller  \: diognal  \: of \:  rhombus = 3 \times 3}}}

{\dashrightarrow{\sf{Smaller  \: diognal  \: of \:  rhombus = 9 \: cm}}}

\bigstar{\red{\underline{\boxed{\bf{Smaller  \: diognal  \: of \:  rhombus = 9 \: cm}}}}}

The smaller diognal of rhombus is 9 cm.

\begin{gathered}\end{gathered}

\green\bigstar Now, Finding the area of rhombus :-

{\dashrightarrow{\sf{Area\:of\:rhombus=\dfrac{1}{2}\times{d_1}\times{d_2}\:}}}

{\dashrightarrow{\sf{Area\:of\:rhombus=\dfrac{1}{2}\times 9\times 12\:}}}

{\dashrightarrow{\sf{Area\:of\:rhombus=\dfrac{1 \times 9 \times 12}{2}}}}

{\dashrightarrow{\sf{Area\:of\:rhombus=\dfrac{108}{2}}}}

{\dashrightarrow{\sf{Area\:of\:rhombus= \cancel{\dfrac{108}{2}}}}}

{\dashrightarrow{\sf{Area\:of\:rhombus=54 \:  {cm}^{2} }}}

\bigstar{\red{\underline{\boxed{\bf{Area\:of\:rhombus=54 \:  {cm}^{2}}}}}}

The area of rhombus is 54 cm².

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Learn  \: More: -}}}}}

\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Request: -}}}}}

  • ⟶ If there is any difficulty viewing this answer in app, kindly see this answer at website Brainly.in for clear steps and understanding.
  • ⟶ Here is the question link : https://brainly.in/question/31574651

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions