Math, asked by kashish981210, 11 months ago

the diagonals of a rhombus measure 16 cm and 30 cm, then it perimeter is
answer is 68 but how​

Answers

Answered by Nєєнα
13

Step-by-step explanation:

hope it helps u......

#follow me#

Attachments:
Answered by Anonymous
10

SOLUTION

Let ABCD be the given rhombus.

We know that the diagonals of a rhombus are perpendicular bisector of each other.

Let the point of intersection of diagonals AC & BD be M.

Given, AC= 30cm & BD= 16cm

Now,

AM= AC/2= 30/2= 15cm

& DM= BD/2= 16/2= 8cm

Now, In right ∆AMD,

By applying Pythagoras theorem,

 {</u></strong><strong><u>AD</u></strong><strong><u>}^{2}  =  {</u></strong><strong><u>AM</u></strong><strong><u>}^{2}   +  {</u></strong><strong><u>MD</u></strong><strong><u>}^{2}  \\  =  &gt;  {</u></strong><strong><u>AD</u></strong><strong><u>}^{2}  =  {15}^{2}  +  {8}^{2}  \\  =  &gt;  {</u></strong><strong><u>AD</u></strong><strong><u>}^{2}  = 225 + 64 \\  =  &gt;  {</u></strong><strong><u>AD</u></strong><strong><u>}^{2}  = 289 \\  =  &gt; </u></strong><strong><u>AD</u></strong><strong><u> =  \sqrt{289}  = 17cm

Again, all the sides of a rhombus are equal.

Therefore,

AB=BC=CD=AD= 17cm

Now the Perimeter of rhombus:

Sum of all sides (4×side)

=) 4× 17cm

=) 68cm

Hope it helps ☺️

Similar questions