Math, asked by chinnuyadav185, 8 months ago

The diagonals of a rhombus measure 18 cm and 24 cm. Find its perimeter.​

Answers

Answered by anveshamishra13
3

Answer:

In a rhombus, the diagonals bisect each other at 90

0

Referring the diagram, if PR =18cm, SQ =24cm, then OP =9cm, OQ =12cm

Since, triangle POQ is a right angled triangle,

PQ

2

=OP

2

+OQ

2

=>9

2

+12

2

=225

PQ=

225

=15 cm

Hence, the length of the sides of the diagonal =15 cm.

Since the length of all sides of a rhombus are equal, Perimeter =4× length of one side =4×15=60cm

Answered by vinod04jangid
3

Answer:The perimeter of given rhombus is 60 cm.

Step-by-step explanation:

Given:The diagonals of a rhombus measure 18 cm and 24 cm.

To find: We have to find the perimeter of rhombus.

Explanation:

Step 1: We know that, the diagonals of a rhombus bisect each other at right angles.

AO=OC=\frac{24}{2}

                    = 12 cm

and BO=OD= \frac{18}{2}

                        = 9

Step 2: Consider right angled triangle Δ AOB,

              From pythagoras theorem, we have

                      (AB)^{2}  = (AO)^{2}  + (BO)^{2}

                                 = (12)^{2} + (9)^{2}

                                 =144+81

                                 = 225

⇒                        AB =\sqrt{225}

                           AB = 15 cm

Hence the measure of each side og given rhombus is 15 cm.

Step 3: The perimeter of a rhombus is given by,

                          P = 4a

                          P = 4×15

                          P = 60 cm

Hence, the perimeter of given rhombus is 60 cm.

#SPJ2

The diagonals of a rhombus are 24 cm and 10 cm find its area and perimeter.

https://brainly.in/question/5981553

The length of diagonals of rhombus are 24 cm and 32 cm. The perimeter of the rhombus is.

https://brainly.in/question/2620753

Similar questions