the diagonals of rectangle ABCD intersect each other at O . if angle AOD is 30 then find angle OCD
Attachments:
Answers
Answered by
23
● Given in Rectangle ABCD
=> angle(AOD) = 30
_____________________________
ᴥ We know that,
=> angle(AOD) + angle(DOC) = 180 _________________[ Linear Pair ]
=> 30 + angle(DOC) = 180 ____[ Given ]
=> angle(DOC) = 150 _________[ Eq(1) ]
______________________________
{ ◢ Since Diagonal of Rectangle are equal and they bisect each other }
ᴥ Then,
=> OA = OB = OC = OD
_______________________________
ᴥ NOW,
△DOC
{◢ Angles opposite to equal sides of a triangle are equal }
ᴥ Then,
=> angle(ODC) = angle(OCD)
ᴥ LET'S
=> angle(ODC) = angle(OCD) = X
________________________________
Again In △DOC
ᴥ We know that,
[angle(DOC)+angle(ODC)+angle(OCD)] = 180
________________________________
ᴥ Plug the all values we get,
=> 150 + X + X = 180
=> 150 + 2X = 180
=> 2X = 30
=> X = 15 ________________[ANSWER]
____________________________
ᴥ HENCE,
=> ANGLE(OCD) = 15 _________________[ANSWER]
==================================
=> angle(AOD) = 30
_____________________________
ᴥ We know that,
=> angle(AOD) + angle(DOC) = 180 _________________[ Linear Pair ]
=> 30 + angle(DOC) = 180 ____[ Given ]
=> angle(DOC) = 150 _________[ Eq(1) ]
______________________________
{ ◢ Since Diagonal of Rectangle are equal and they bisect each other }
ᴥ Then,
=> OA = OB = OC = OD
_______________________________
ᴥ NOW,
△DOC
{◢ Angles opposite to equal sides of a triangle are equal }
ᴥ Then,
=> angle(ODC) = angle(OCD)
ᴥ LET'S
=> angle(ODC) = angle(OCD) = X
________________________________
Again In △DOC
ᴥ We know that,
[angle(DOC)+angle(ODC)+angle(OCD)] = 180
________________________________
ᴥ Plug the all values we get,
=> 150 + X + X = 180
=> 150 + 2X = 180
=> 2X = 30
=> X = 15 ________________[ANSWER]
____________________________
ᴥ HENCE,
=> ANGLE(OCD) = 15 _________________[ANSWER]
==================================
Attachments:
Similar questions