The diagonals of rhombus ABCD intersect at the point ‘O’. If ∠BDC=50° , then ∠OAB is
Answers
Answer:
40°
Step-by-step explanation:
Its given ABCD is a IIgram and AC and BD are its diagonals intersecting at point O.
Given : angle BOC = 900
angle BDC = 500
To find : angle OAB
Answer : i) angle BOC + angle COD = 180° (Linear Pair)
angle COD = 180° - angle BOC
angle COD = 180° - 90°
angle COD = 90°
ii) angle COD + angle ODC + angle OCD = 180 (Angle Sum Property)
angle OCD = 180 - 90 - 50
angle OCD = 40°
iii) angle OCD = angle OAB (Alternate Interior Angles)
so, therefore angle OAB = 40°.
Given:
ABCD is a rhombus, its diagonals intersect at 'O'.
∠BCD = 50°
To Find:
∠OAB
Solution:
∠BOC and ∠COD are linear pairs.
⇒ ∠BOC + ∠COD = 180°
⇒ 90° + ∠COD = 180°
⇒ ∠COD = 180°- 90°
⇒ ∠COD = 90°
Now,
∠COD + ∠BDC + ∠OCD = 180° [angle sum property of a triangle]
⇒ 90° + 50° + ∠OCD = 180°
⇒ ∠OCD = 180° - 140°
⇒ ∠OCD = 40°
Then, ∠OCD = ∠OAB ( Alternate interior angles are equal)
So, ∠OAB = 40°
Therefore, ∠OAB = 40°