Math, asked by kavyaguptaalwar8, 16 days ago

The diagonals of which quadrilateral are equal and bisect each other at 90°?​

Answers

Answered by firdoustashrifullahi
1

Answer:

Solution−

Given integral is

\begin{gathered}\rm \: \displaystyle\int\rm \bigg(log(logx) + \dfrac{1}{ {(logx)}^{2} } \bigg) \: dx \\ \end{gathered}

∫(log(logx)+

(logx)

2

1

)dx

To solve this integral, we use method of substitution.

So, substituting

\begin{gathered}\rm \: logx = y \\ \end{gathered}

logx=y

\begin{gathered}\rm \: x = {e}^{y} \\ \end{gathered}

x=e

y

\begin{gathered}\rm \: dx = {e}^{y}dy \\ \end{gathered}

dx=e

y

dy

So, on substituting all these values, we get

\rm \: = \displaystyle\int\rm \bigg(logy + \dfrac{1}{ {y}^{2} } \bigg) {e}^{y} \: dy=∫(logy+

y

2

1

)e

y

dy

\begin{gathered}\rm \: = \displaystyle\int\rm \bigg(logy + \dfrac{1}{y} - \dfrac{1}{y} + \dfrac{1}{ {y}^{2} } \bigg) {e}^{y} \: dy \\ \end{gathered}

=∫(logy+

y

1

y

1

+

y

2

1

)e

y

dy

can be further rewritten as

\begin{gathered}\rm \: = \displaystyle\int\rm \bigg(logy + \dfrac{1}{y} \bigg) {e}^{y}dy - \displaystyle\int\rm \bigg(\dfrac{1}{y} - \dfrac{1}{ {y}^{2} } \bigg) {e}^{y}dy \\ \end{gathered}

=∫(logy+

y

1

)e

y

dy−∫(

y

1

y

2

1

)e

y

dy

We know,

\begin{gathered}\boxed{ \rm{ \:\displaystyle\int\rm {e}^{x}[f(x) + f'(x)]dx \: = \: {e}^{x}f(x) + c \: }} \\ \end{gathered}

∫e

x

[f(x)+f

(x)]dx=e

x

f(x)+c

So, for the first integral,

\begin{gathered}\rm \: f(y) = logy \\ \end{gathered}

f(y)=logy

\begin{gathered}\rm \: f'(y) = \dfrac{1}{y} \\ \end{gathered}

f

(y)=

y

1

And, for the second integral,

\begin{gathered}\rm \: f(y) = \dfrac{1}{y} \\ \end{gathered}

f(y)=

y

1

\begin{gathered}\rm \: f'(y) = - \dfrac{1}{ {y}^{2} } \: \\ \end{gathered}

f

(y)=−

y

2

1

So, using the above formula, we get

\begin{gathered}\rm \: = \: {e}^{y}logy \: - \: {e}^{y} \times \dfrac{1}{y} + c \\ \end{gathered}

=e

y

logy−e

y

×

y

1

+c

\begin{gathered}\rm \: = \: {e}^{y}\bigg(logy - \dfrac{1}{y} \bigg) + c \\ \end{gathered}

=e

y

(logy−

y

1

)+c

\begin{gathered}\rm \: = \: x\bigg(log(logx) - \dfrac{1}{logx} \bigg) + c \\ \end{gathered}

=x(log(logx)−

logx

1

)+c

Hence,

\begin{gathered}\rm \:\displaystyle\int\rm \bigg(log(logx) + \frac{1}{ {(logx)}^{2} } \bigg)dx= x\bigg(log(logx)-\dfrac{1}{logx} \bigg)+ c \\ \end{gathered}

∫(log(logx)+

(logx)

2

1

)dx=x(log(logx)−

logx

1

)+c

\rule{190pt}{2pt}

Remark :- Proof of the property

\begin{gathered}\boxed{ \rm{ \:\displaystyle\int\rm {e}^{x}[f(x) + f'(x)]dx \: = \: {e}^{x}f(x) + c \: }} \\ \end{gathered}

∫e

x

[f(x)+f

(x)]dx=e

x

f(x)+c

Consider,

\begin{gathered}\rm \: \displaystyle\int\rm {e}^{x}[f(x) + f'(x)] \: dx \\ \end{gathered}

∫e

x

[f(x)+f

(x)]dx

\begin{gathered}\rm \: = \displaystyle\int\rm {e}^{x}f(x)dx + \displaystyle\int\rm {e}^{x}f'(x) \: dx \\ \end{gathered}

=∫e

x

f(x)dx+∫e

x

f

(x)dx

Now, using integration by parts in first integral, we get

\begin{gathered}\rm \: = f(x)\displaystyle\int\rm {e}^{x}dx - \displaystyle\int\rm \bigg[\dfrac{d}{dx}f(x)\displaystyle\int\rm {e}^{x}dx \bigg]dx+ \displaystyle\int\rm {e}^{x}f'(x) \: dx \\ \end{gathered}

=f(x)∫e

x

dx−∫[

dx

d

f(x)∫e

x

dx]dx+∫e

x

f

(x)dx

\begin{gathered}\rm \: = {e}^{x}f(x) - \displaystyle\int\rm {e}^{x}f'(x) \: dx + \displaystyle\int\rm {e}^{x}f'(x) \: dx \: + \: c \\ \end{gathered}

=e

x

f(x)−∫e

x

f

(x)dx+∫e

x

f

(x)dx+c

\begin{gathered}\rm \: = \: {e}^{x}f(x)\: + \: c \\ \end{gathered}

=e

x

f(x)+c

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}\end{gathered}

f(x)

k

sinx

cosx

sec

2

x

cosec

2

x

secxtanx

cosecxcotx

tanx

x

1

e

x

∫f(x)dx

kx+c

−cosx+c

sinx+c

tanx+c

−cotx+c

secx+c

−cosecx+c

logsecx+c

logx+c

e

x

+c

Similar questions