Math, asked by abdulazeemkhan55, 11 months ago

The diagram consists of a right-angled Δ ABC. D is the mid-point of AB and F is the mid-point of AD. Given that AG // DE // BC and the area of the triangle is 36 cm2, find the area of the trapezium FGED.

Attachments:

Answers

Answered by CharmingPrince
36

\huge{ \green{ \mathfrak{ \underline{Answer}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\boxed{\red{\bold{Given:}}}

FG \: || \: DE \:||\: BC

\boxed{\red{\bold{In\: \triangle ABC\: and\: \triangle ADE :}}}

\angle ADE = \angle ABC (each\: 90^o)

\angle AED = \angle ACB (corresponding\; angles )

\tt{\blue{By \:AA\: criterion, \triangle ABC \sim \triangle ADE}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\displaystyle{\frac{ar(ADE)}{ar(ABC)}} = \left( {\frac{AD}{AB}} \right)^2 (By\; theorem)

\displaystyle{\frac{ar(ADE)}{ar(ABC)}} =\left( {\frac{AD}{2AD}} \right) ^2 (Because \:D\: is \\ the\: midpoint)

\displaystyle{\frac{ar(ADE)}{36}} = \left( {\frac{1}{2}}\right)^2

ar(ADE) = \displaystyle{\frac{36}{4}}

ar(ADE) = 9 cm^2

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\boxed{\red{\bold{In\: \triangle ADE and \triangle AFG :}}}

\angle AFG = \angle ADE (each \:90^o)

\angle AGF = \angle AED (corresponding \;angles)

\tt{\blue{By \:AA\: criterion, \triangle AFG \sim \triangle ADE}}

\displaystyle{\frac{ar(AFG)}{ar(ADE)}} =\left( {\frac{AF}{AD}} \right)^2(By\; theorem)

\displaystyle{\frac{ar(AFG)}{ar(ADE)}} = \left( {\frac{AF}{2AF}} \right)^2(Because\: F\: is \\ the\: midpoint)

\displaystyle{\frac{ar(AFG)}{9}} = \left( {\frac{1}{2}} \right)^2

ar(AFG) = \displaystyle{\frac{9}{4}}

ar(AFG) = 2.25 cm^2

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\boxed{\red{\bold{ar(FGED):}}}

ar(FGED) = ar(ADE) - ar(AFG)

ar(FGED) = 9 cm^2 - 2.25 cm^2

ar(FGED) = 6.75 cm^2

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Similar questions