Math, asked by hinaimran06, 1 month ago

The diagram shows a cuboid of volume
V
cm3.
The length of the cuboid is
y
cm.
The width and height of the cuboid are both
x
cm.

The total length of all the edges of the cuboid is 112 cm.


V
=
28
x
2

2
x
3

It can be shown that
d
V
d
x
=
56
x

6
x
2

Find the maximum value of
V
.
Give your answer correct to 3 significant figures

Answers

Answered by kelly324141
1

Answer:

what is this bro

ishe acche image dal do

Attachments:
Answered by Anonymous
0

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:x=1\:and\:3}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\ \tt:  \implies  \frac{3}{x + 1 } - \frac{1}{2} = \frac{2}{3x - 1} \\  \\  \red{\underline \bold{To \: Find :}}\\  \tt:  \implies value \: of \: x = ?

• According to given question :

 \bold{As \: we \: know \: that} \\\tt:  \implies  \frac{3}{x + 1 } - \frac{1}{2} = \frac{2}{3x - 1} \\  \\ \tt:  \implies   \frac{3 \times 2 - (x + 1)}{2(x + 1)}  =  \frac{2}{3x - 1}  \\  \\\tt:  \implies \frac{6 - x - 1}{2x + 2}  =  \frac{2}{3x - 1}  \\  \\ \tt:  \implies  \frac{5 - x}{2x + 2}  =  \frac{2}{3x - 1}  \\   \\\tt:  \implies (5 - x)(3x - 1) = 4x + 4 \\ \\\tt:  \implies 15x - 3 {x}^{2}  - 5 + x = 4x + 4 \\  \\\tt:  \implies 16x - 4x - 3 {x}^{2}  - 5 - 4 = 0 \\  \\ \tt:  \implies 12x -  {3x}^{2}  -  9 = 0 \\  \\\tt:  \implies 3 {x}^{2}  - 12x  + 9 = 0 \\  \\\tt:  \implies  {x}^{2}  - 4x  +  3 = 0 \\  \\\tt:  \implies  {x}^{2}  - 3x - x + 3 = 0 \\ \\\tt:  \implies  x(x - 3) - 1(x - 3) = 0 \\ \\\tt:  \implies (x - 1)(x - 3) = 0 \\ \\ \green{\tt:  \implies x = 1 \: and \: 3}

Similar questions