Math, asked by anuragfilms1, 9 months ago

the diameter of a 120 cm long roller is 84 cm It takes 1000 complete revolutions in moving once over to level a playground what is the area of the playground

Answers

Answered by RvChaudharY50
200

Solution :-

→ Length of roller = 120cm.

→ Diameter of roller = 84cm.

→ Radius of roller = (Diameter)/2 = 84/2 = 42cm.

As we know, a roller is in the shape of a cylinder.

→ Perimeter of roller = Area covered by roller in 1 one revolution = 2 * π * (radius) * Length

→ Perimeter = 2 * (22/7) * 42 * 120

→ Perimeter = 44 * 6 * 120

→ Perimeter = 31,680 cm².

Therefore,

Area covered by wheel in 1000 revolutions = (31680 * 1000) cm² = (31680000) / (10000) = 3168m² . (Ans.)

Hence, Area of Playground is 3168m².

Answered by Anonymous
190

ANSWER

\large\underline\bold{GIVEN,}

\sf\dashrightarrow height(H)= 120cm

\sf\dashrightarrow diameter of roller= 84cm

\sf\therefore radius= \dfrac{diameter}{2}

\sf\dashrightarrow \dfrac{84}{2}

\sf\dashrightarrow \cancel \dfrac{84}{2}

\sf\dashrightarrow radius= 42cm

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow AREA\: OF\:PLAYGROUND

✯.FORMULA IN USE,

\large{\boxed{\bf{ \star\:\: C.S.A\: OF\: CYLINDER= 2 \pi rh \:\: \star}}}

\large\underline\bold{SOLUTION,}

ACCORDING TO THE QUESTION,

\purple{\text{AREA COVERED BY ROLLER IN 1 REVOLUTION = PERIMETER OF ROLLER}}

\sf\therefore AREA \:COVERED \:IN\: ONE\: REVOLUTION= 2 \pi r h

\sf\implies 2 \times \dfrac{22}{7} \times 42 \times 120

\sf\implies 2 \times \dfrac{22}{\cancel{7}} \times \cancel{42} \times 120

\sf\implies 2 \times 22 \times 6 \times 120

\sf\implies 44 \times 72

\sf\implies 31680cm^2

\large{\boxed{\bf{ \star\:\: 31680cm^2\:\: \star}}}

\sf\therefore THE\:ROLLER\:TAKES\:1000\: REVOLUTIONS\:TO\:COVER\:AREA\:OF\:THAT\: PARTICULAR\:PALAYGROUND

\sf\therefore we\: know,\: to\: complete\: one \:revolution\: it \:takes \:31680cm^2 \:area

\sf\therefore then \:area \:of\:rectangle = 1000 \times the \:area\: in\: one\: complete\: revolution

\sf\implies 1000 \times 31680

\sf\implies 31680000cm^2

CONVERSION,

\sf\therefore cm^2 \:into\:m^2

\sf\therefore \dfrac{ 31680000}{ 100 \times 100}

\sf\implies \cancel \dfrac{ 31680000}{ 100 \times 100}

\sf\implies 3168 m^2

\large{\boxed{\bf{ \star\:\:  AREA\:OF\: PLAYGROUND= 3168m^2 \:\: \star}}}

\large\underline\bold{AREA\:OF\:PLAYGROUND\:IS\:3168cm^2}

_________________

Similar questions