Math, asked by Anonymous, 4 months ago

the diameter of a 120 cm long roller is 84 cm It takes 1000 complete revolutions in moving once over to level a playground what is the area of the playground​

Answers

Answered by CloseEncounter
3

\huge\mathtt{\fbox{\red{Answer✍︎}}}

\large\underline\mathfrak{\red{GIVEN,}}

\sf\dashrightarrow \blue{height(H)= 120cm }

\sf\dashrightarrow \blue{diameter of roller= 84cm}

\sf\therefore \blue{radius= \dfrac{diameter}{2}}

\sf\dashrightarrow \blue{ \dfrac{84}{2}}

\sf\dashrightarrow \blue{\cancel \dfrac{84}{2}}

\sf\dashrightarrow \blue{radius= 42cm}

\large\underline\mathfrak{\purple{TO\:FIND,}}

\sf\dashrightarrow \red{AREA\: OF\:PLAYGROUND }

\rm{\boxed{\sf{ \circ\:\: C.S.A\: OF\: CYLINDER= 2 \pi rh \:\: \circ}}}

\large\underline\mathtt{\purple{SOLUTION,}} </p><p>

\purple{\text{AREA COVERED BY ROLLER IN 1 REVOLUTION = PERIMETER OF ROLLER}}

\sf\therefore \pink{AREA \:COVERED \:IN\: ONE\: REVOLUTION= 2 \pi r h}

\sf\implies \red{ 2 \times \dfrac{22}{7} \times 42 \times 120}

\sf\implies \blue{ 2 \times \dfrac{22}{\cancel{7}} \times \cancel{42} \times 1</p><p>[tex]\sf\implies \red{2 \times 22 \times 6 \times 120}

\sf\implies \blue{ 44 \times 72 }

\sf\implies \pink{ 31680cm^2 }⟹

\rm{\boxed{\sf{ \circ\:\: 31680cm^2\:\: \circ}}}

\sf\therefore \purple{ THE\:ROLLER\:TAKES\:1000\: REVOLUTIONS TO\:COVER\:AREA\:OF\:THAT\: PARTICULAR\:PALAYGROUND}

\sf\therefore \blue{we\: know,\: to\: complete\: one \:revolution\: it \:takes \:31680cm^2 \:area }

\sf\therefore \red{then \:area \:of\:rectangle = 1000 \times the \:area\: in\: one\: complete\: revolution}

\sf\implies \pink{ 1000 \times 31680 }⟹1000×31680

\sf\implies \green{31680000cm^2}⟹</p><p>[tex]\sf\therefore \green{cm^2 \:into\:m^2}

\sf\therefore \blue{\dfrac{ 31680000}{ 100 \times 100}}

\sf\implies \red{\cancel \dfrac{ 31680000}{ 100 \times 100}}

\sf\implies \orange{3168 m^2}

\rm{\boxed{\sf{ \circ\:\: AREA\:OF\: PLAYGROUND= 3168m^2 \:\: \circ}}}

\rm\underline\mathrm{AREA\:OF\:PLAYGROUND\:IS\:3168cm^2}

hope it helps ☺️☺️

Answered by dibyangshughosh309
25

 \huge{ \underline{ \underline{ \color{magenta}{ \mathfrak{ ★solution :}}}}}

➪ Length of roller = 120 cm.

➪ Diameter of roller = 84 cm.

➪ Radius of roller

= \dfrac{(Diameter)}{2}

= \dfrac{84}{2}

= 42 cm

As we know, a roller is in the shape of cylinder.

➪Perimeter of roller = Area covered by roller in 1 one revolution = 2 × π × (radius ) × length

➪Perimeter

= 2×( \dfrac{22}{ \cancel7} )  \times  \cancel{42} \times 120

➪Perimeter = 44 × 6 × 120

➪Perimeter = 31,680 cm²

Therefore,

➪Area covered by wheel in 1000 revolutions

= (31,680×1000) cm²

= \dfrac{31,680,000}{10000}

Answer = \red{3,168m²}

Hence, Area of Playground is 3,168m²

Similar questions