Math, asked by pratyushgnan4415, 4 months ago

the diameter of a circle is 14cm find its area.

Answers

Answered by Anonymous
5

\huge\mathfrak\purple{Solution}

Diameter = 14cm

Radius = 14/2 = 7cm

area \: of \: circle \:  =  \: \pi \:  {r}^{2}

= 22/7 × 7cm × 7cm

= 22 × 7cm^2

= 154cm^2

Hope this helps you.

# By Sparkly Princess

Answered by Anonymous
24

\large\sf\underline{Given\::}

  • Diameter of the circle = 14 cm.

\large\sf\underline{To\:find\::}

  • Area of the circle

\large\sf\underline{How\:to\:solve\:?}

In the question we are given the diameter of the circle as 14 cm. We are asked to find the area of the circle. We know the area of the circle = πr². So we need the radius of the circle to calculate the area . And we do know that Radius = diameter/2 . So let's first calculate the radius and then the area. Lets proceed !

\large\sf\underline{Solution\::}

Diameter = 14 cm

And we do know :

\large{\mathfrak{Radius\:=\:\frac{diameter}{2}}}

Therefore ,

\sf\implies\:Radius=\cancel{\frac{14}{2}}

\small\fbox\red{∴\:Radius\:=\:7\:cm}

Now again we know that :

\large{\mathfrak{Area\:of\:the\:circle=\:πr^{2}}}

where :

  • π = {\sf{{\pink{\frac{22}{7}}}}}.

  • r stands for {\sf{{\pink{Radius}}}}.

Now Let's substitute the values in the formula :

\sf\implies\:Area\:=\:\frac{22}{7} \times (7) ^{2}

\sf\implies\:Area\:=\:\frac{22}{7} \times 49

\sf\implies\:Area\:=\:\cancel{\frac{1078}{7}}

\small\fbox\red{∴\:Area\:154\:sq.cm}

\large\sf\underline{Diagram\::}

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\put(0,0){\line(1,0){2.3}}\put(0.5,0.3){\bf\large 7 cm}\end{picture}

_________________________

\dag\:\underline{\sf So\:the\:required\:area\:of\:the\:circle\:is\:154\:sq.cm}

For the diagram view the answer from web :D

!! Hope it helps !!

Similar questions