Math, asked by shrena, 3 months ago

The diameter of a circle is 30 and the length of a chord in this circle is 24. Find the distance of that

chord from the centre. (with diagram) ​

Answers

Answered by ExploringMathematics
25

\textrm{The Diameter of Circle is 30 cm, So Radius = 15 cm ($ \because$ Radius = Diameter $\div $ 2)}

\longrightarrow\textrm{ Let Radius of Circle be OA. So OA = 15 cm}

\longrightarrow\textrm{ Let the Length of the chord be AB. So AB = 24 cm}

\longrightarrow\textrm{ Let C be the midpoint of AB. So AC = CB = 12 cm}

\bigstar\textrm{ In $\triangle$AOC, $\angle$C = 90$^\circ$ (Right Angle) }

\longrightarrow\textrm{ OA$^2$ = AC$^2$ + OC$^2\quad$....From Pythagoras Theorem}

\longrightarrow\textrm{ (15 cm)$^2$ = (12 cm)$^2$ + OC$^2$}

\longrightarrow\textrm{ 225 cm$^2$ = 144 cm$^2$ + OC$^2$}

\longrightarrow\textrm{ OC$^2$ = 225 cm$^2$ - 144 cm$^2$ = 81 cm$^2$}

\longrightarrow\textrm{ OC = $\sqrt{\rm{81 cm^2}}$ = 9 cm}

\underline{\underline{\textrm{$\therefore$ Distance of Chord from Center is 9 cm}}}

Attachments:
Similar questions