Math, asked by athenaann1327, 7 months ago

The diameter of a circle whose area is equal to the sum of areas of two circles of radii 24 cm and 7 cm respectively is ​

Answers

Answered by mangalam1604
0

Answer:

mark me BRAINLIST I will follow you

Answered by Meetvyas88
10

Answer:

r1 = 24cm

area1 = π r^{2}

       =\frac{22}{7} \times {24}^{2}\\\\=\frac{22}{7} \times 576 \\\\=\frac{22\times576}{7} \\\\=\frac{12672}{7}cm^{2}

r2 = 7cm

area2 = π r^{2}

       =\frac{22}{7} \times {7}^{2}\\\\=\frac{22}{7} \times 49 \\\\=\frac{22\times7(7)}{7} \\\\=22 \times 7 \\\\=154 cm^{2}

area  of required circle = area of first circle with radius 24cm +  area of second circle with radius 7cm

= \frac{12672}{7} +154\\\\=\frac{12672}{7} +\frac{154(7)}{1(7)}\\\\=\frac{12672}{7} +\frac{1078}{7}\\\\=\frac{12672 + 1078}{7}\\\\=\frac{13750}{7}cm^{2} \\\\

area =  \frac{13750}{7} cm^{2} \\\\ pi \times r^{2} = \frac{13750}{7}\\\\r^{2} =\frac{13750}{7}  \times \frac{7}{22} \\\\r^{2} = \frac{1250(11)}{2(11)} \\\\r^{2} =  \frac{625(2)}{2} \\\\r^{2} =625\\\\r^{2} = (25)^{2}\\\\r = 25cm                                        

radius = 25 cm

∴ diameter = 25 × 2

∴ diameter = 50cm

Step-by-step explanation:

Similar questions