Math, asked by srikant6284, 6 hours ago

The diameter of a circular park is 42 m. A 3.5 m wide path lies along the periphery just outside the park . Find the cost of constructing a pavement on the path at the rate of $20per m²

Answers

Answered by Anonymous
26

STEP-BY-STEP EXPLANATION:

.

 \sf Diameter \:  of  \: Circular \:  park = 42m \\

 \sf Radius  \: of \:  Circular  \: park =  \frac{d}{2}  \\

\longmapsto \sf Radius  \: of \:  Circular  \: park =   \frac {42m}{2}  \\

\longmapsto \sf Radius  \: of \:  Circular  \: park  \: (r)=  21m  \\

\sf Radius  \: of  \: Outer \:  Circle = 21m + 3.5m \\

 \longmapsto\sf Radius  \: of  \: Outer \:  Circle  \: (R)= 24.5m \\

 \sf Area  \: of  \: Path = Area_{(Outer \:  Circle)}-Area_{(Circular  \: park)} \\

\longmapsto  \sf Area  \: of  \: Path = \pi {R}^{2} - \pi {r}^{2}  \\

\longmapsto  \sf Area  \: of  \: Path = \pi( {R}^{2} -  {r}^{2} ) \\

 \bf{[ {a}^{2} -  {b}^{2}  = (a - b)(a + b) ]}

\longmapsto  \sf Area  \: of  \: Path = \pi( {R}-  {r} ) ({R} +  {r})\\

\longmapsto  \sf Area  \: of  \: Path = \pi(24.5m -  21m ) (24.5m +  21m)\\

\longmapsto  \sf Area  \: of  \: Path = \pi(3.5 ) (45.5m)\\

\longmapsto  \sf Area  \: of  \: Path =  \frac{22}{ \cancel{7}} ( \cancel{3.5 }) (45.5m)\\

\longmapsto  \sf Area  \: of  \: Path =  {22}(0.5m ) (45.5m)\\

\longmapsto  \bf Area  \: of  \: Path =  500.5 {m}^{2} \\

 \sf Cost  \: of \:  pavement  \: of \:  path =   \pounds \: 20 \: per \:  {m}^{2}  \\

\longmapsto  \sf Total  \: Cost  \: of \:  pavement  \: of \:  path =    \frac{\pounds \: 20} { \cancel{{1m}^{2}}} \times 500.5  \cancel{{m}^{2}}   \\

\longmapsto  \sf Total  \: Cost  \: of \:  pavement  \: of \:  path =    {\pounds \: 20}  \times 500.5   \\

\longmapsto  \bf Total  \: Cost  \: of \:  pavement  \: of \:  path =    \pounds  \: 10010   \\  \\

REQUIRED ANSWER,

.

  • \bf Total  \: Cost  \: of \:  pavement  \: of \:  path =    \pounds  \: 10010    \\
Answered by Anonymous
44

Answer:

Diagram :

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\qbezier(1.2,0)(1.121,1.121)(0,1.2)\qbezier(1.2,0)(1.121,-1.121)(0,-1.2)\qbezier(0,-1.2)(-1.121,-1.121)(-1.2,0)\qbezier(-1.2,0)(-1.121,1.121)(0,1.2)\put(-0,0){\vector(-1,0){2.3}}\put(0,0){\vector(0,1){1.2}}\put(-1.9,0.2){$\bf{3.5\ cm}$}\put(0.2,0.3){$\bf{42\ cm}$}\end{picture}

\begin{gathered}\end{gathered}

Given :

  • The diameter of a circular park is 42 m.
  • A 3.5 m wide path lies along the periphery just outside the park.

\begin{gathered}\end{gathered}

To Find :

  • The cost of constructing a pavement on the path at the rate of $20per m².

\begin{gathered}\end{gathered}

Using Formulas :

\longrightarrow\small{\underline{\boxed{\sf{Radius = \dfrac{Diameter}{2}}}}}

\longrightarrow\small{\underline{\boxed{\sf{Area  \: of  \: Inner \:  circle  =  \pi{r}^{2}}}}}

\longrightarrow\small{\underline{\boxed{\sf{Area  \: of  \: outer\:  circle  =  \pi{R}^{2}}}}}

{\longrightarrow{\small{\underline{\boxed{\sf{Area_{(parth)} = Area_{(outer\: circle)}  - Area_{(inner \: circle)}}}}}}}

{\longrightarrow{\small{\underline{\boxed{\sf{Cost = Area \:  of  \: path   \times  constructing \:  rate  \: per \:   {m}^{2}}}}}}}

\begin{gathered}\end{gathered}

Solution :

⚘ Finding the area of park without path :-

\longrightarrow{\sf{Radius = \dfrac{Diameter}{2}}}

\longrightarrow{\sf{Radius = \dfrac{42}{2}}}

\longrightarrow{\sf{Radius =  \cancel\dfrac{42}{2}}}

\longrightarrow{ \underline{\boxed{\sf{\red{Radius = 21 \: m}}}}}

∴ The radius of park without path is 21 m.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━┅━

⚘ Finding the area of park with path :-

\longrightarrow{\sf{Radius = 21 + 3.5}}

\longrightarrow{\sf{Radius = 24.5 \: m}}

\longrightarrow{ \underline{\boxed{\sf{\red{Radius = 24.5\: m}}}}}

∴ The area of park with path is 24.5 m.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━┅━

⚘ Finding area of Inner circle :-

\longrightarrow{\sf{Area  \: of  \: Inner \:  circle  =  \pi{r}^{2}}}

{\longrightarrow{\sf{Area  \: of  \: Inner \:  circle  =  \dfrac{22}{7} \times  {(21)}^{2}}}}

{\longrightarrow{\sf{Area  \: of  \: Inner \:  circle  =  \dfrac{22}{7} \times  {(21 \times 21)}}}}

{\longrightarrow{\sf{Area  \: of  \: Inner \:  circle  =  \dfrac{22}{7} \times  {441}}}}

{\longrightarrow{\sf{Area  \: of  \: Inner \:  circle  =  \dfrac{22 \times 441}{7}}}}

{\longrightarrow{\sf{Area  \: of  \: Inner \:  circle  =  \dfrac{9702}{7}}}}

{\longrightarrow{\sf{Area  \: of  \: Inner \:  circle  =  \cancel{\dfrac{9702}{7}}}}}

{\longrightarrow{\sf{Area  \: of  \: Inner \:  circle  =  1386 \:  {m}^{2}}}}

{\longrightarrow{ \underline{\boxed{\sf{\red{Area  \: of  \: Inner \:  circle  =  1386 \:  {m}^{2}}}}}}}

∴ The area of inner circle is 1386 m².

━┅━┅━┅━┅━┅━┅━┅━┅━┅━┅━

⚘ Finding the area of outer circle :-

\longrightarrow{\sf{Area  \: of  \: outer\:  circle  =  \pi{R}^{2}}}

{\longrightarrow{\sf{Area  \: of  \: outer\:  circle  =  \dfrac{22}{7} \times {(24.5)}^{2}}}}

{\longrightarrow{\sf{Area  \: of  \: outer\:  circle  =  \dfrac{22}{7} \times {(24.5 \times 24.5)}}}}

{\longrightarrow{\sf{Area  \: of  \: outer\:  circle  =  \dfrac{22}{7} \times {600.25}}}}

{\longrightarrow{\sf{Area  \: of  \: outer\:  circle  =  \dfrac{22 \times 600.25}{7}}}}

{\longrightarrow{\sf{Area  \: of  \: outer\:  circle  =  \dfrac{13205.5}{7}}}}

{\longrightarrow{\sf{Area  \: of  \: outer\:  circle  =   \cancel{\dfrac{13205.5}{7}}}}}

{\longrightarrow{\sf{Area  \: of  \: outer\:  circle  = 1886.5 \:  {m}^{2}}}}

{\longrightarrow{ \underline{\boxed{\sf{\red{Area  \: of  \: outer\:  circle  = 1886.5\:  {m}^{2}}}}}}}

∴ The area of outer circle is 1886.5 m².

━┅━┅━┅━┅━┅━┅━┅━┅━┅━┅━

⚘ Finding the area of path :-

{\longrightarrow{\small{\underline{\boxed{\sf{Area_{(parth)} = Area_{(outer\: circle)}  - Area_{(inner \: circle)}}}}}}}

{\longrightarrow{\sf{Area_{(parth)} = 1886.5 -  1386}}}

{\longrightarrow{\sf{Area_{(parth)} =500.5 \:  {m}^{2}}}}

{\longrightarrow{\underline{\boxed{\sf{\red{Area \: of \: parth =500.5 \:  {m}^{2}}}}}}}

∴ The area of path is 505.5 m².

━┅━┅━┅━┅━┅━┅━┅━┅━┅━┅━

⚘ Now finding the cost of constructing a pavement on the path :-

{\longrightarrow{\sf{Cost = Area \:  of  \: path   \times  constructing \:  rate  \: per \:   {m}^{2}}}}

{\longrightarrow{\sf{Cost = 500.5  \times 20}}}

{\longrightarrow{\sf{Cost = \$10010}}}

{\longrightarrow{\underline{\boxed{\sf{\red{Cost = \$10010}}}}}}

∴ The cost of constructing a pavement on the path is $10010.

\underline{\rule{220pt}{2.5pt}}

Similar questions