Math, asked by philipjack873, 5 months ago

The diameter of a cone is 14 cm and slant height is 25 cm . Find the volume of the cone

Answers

Answered by mohithmanjunath1110
1

Answer:

d = 14 cm

r = 7 cm

slant height (l) = 25 cm

(l)² = (h)²+(r)²

(h)^2 = (l)^2 - (r)^2

(h)^2 = (25)²-(7)²

h=root 576 = 24 cm

vertical height = 24 cm [ This is your answer ]

hope it helps

tq..//

Step-by-step explanation:

Answered by Mysterioushine
70

Given :

  • Diameter of cone = 14 cm
  • Slant height = 25 cm

To Find :

  • The volume of the cone

Solution :

The relation between diameter and radius is ,

 \\   : \implies \sf \: d = 2r \\  \\

We have ,

  • diameter (d) = 14 cm

 \\   : \implies \sf \: 14 \: cm = 2r \\  \\

 \\   : \implies \sf \: r =  \frac{14 \: cm}{2}  \\  \\

 \\   : \implies \boxed{\red{\mathfrak{ \: r = 7 \: cm }}}\: \\  \\

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━

Now , The relation between Slant height (l) , radius (r) and height (h) of a cone is given by ;

 \\  \star \: {\boxed{\sf{\purple{ {l}^{2} =  {r}^{2}  +  {h}^{2}  }}}} \\

We have ,

  • Slant height (l) = 25 cm
  • Radius (r) = 7 cm

Substituting the values ,

 \\   : \implies \sf \:  {(25\:cm)}^{2}  =  {(7\:cm)}^{2}  +  {h}^{2}  \\  \\

 \\ :\implies \sf \: 625\:cm^2 = 49 \:cm^2+  {h}^{2}  \\  \\

 \\   : \implies \sf \: 625\:cm^2 - 49\:cm^2 =  {h}^{2}  \\  \\

 \\  :  \implies \sf \: 576\:cm^2 =  {h}^{2}  \\  \\

 \\  : \implies \sf \: h =  \sqrt{576\:cm^2}  \\  \\

 \\   : \implies{\boxed{\mathfrak{\red{h = 24 \: cm}}}} \\  \\

⠀━━━━━━━━━━━━━━━━━━━━━━━━

Volume of a cone is given by ,

 \\  \star \: {\boxed{\purple{\sf{v =  \frac{1}{3}\pi {r}^{2} h }}}} \\  \\

We have ,

  • r = 7 cm
  • h = 24 cm

Substituting the values ,

 \\   : \implies \sf \:v =  \frac{1}{3}   \times  \frac{22}{7}  \times  {(7\:cm)}^{2}  \times 25\:cm \\  \\

 \\   : \implies \sf \: v =  \frac{1}{3}  \times 22 \times 7\:cm^2 \times 25\:cm\\  \\

 \\   : \implies \sf \: v =  \frac{3850 \: cm {}^{3} }{3}  \\  \\

 \\   : \implies{\boxed{\pink{\sf{v = 1283.33 \:  \:  {cm}^{3} }}}}  \: \bigstar \\ \\

 \\  \therefore \underline{ \sf{Hence\:, The\:Volume\:of\:the\:cone\:is\: \bold{1283.33\:cm^3}}}

Similar questions