Math, asked by OfficialPk, 4 months ago

The diameter of a cycle wheel is 1.4 m. Find the distance covered by the cycle in making 300 revolutions by its wheels (Take  \pi = \dfrac{22}{7} )​

Answers

Answered by ApprenticeIAS
35

 \underline{ \underline{ \sf \red{Question}}}  \red:

The diameter of a cycle wheel is 1.4 m. Find the distance covered by the cycle in making 300 revolutions by its wheels (Take  \pi = \dfrac{22}{7} )

 \underline{ \underline{ \sf \red{Answer}}}  \red:

 \rm{Radius \: of \: the \: wheel \:  =  \bigg( \dfrac{1}{2}  \times 1.4 \bigg)m}

 \implies \rm r =  \bigg( \dfrac{1}{2}  \times 1.4 \times 100 \bigg)cm

 \implies \rm r = 70 \: cm

 \rm Circumference \: of \: the \: wheel \:  = 2 \pi  r =  \bigg(2 \times  \dfrac{22}{7}  \times 70 \bigg) \: cm

 \implies \rm circumference \:  = 440 \: cm

 \rm Distance \: covered \: by \: the \: wheel \: in \: 1 \: revolution \:  = 440 \: cm

 \rm Distance \: covered \: by \: the \: wheel \: in \: 300 \: revolutions \:  =  \bigg( \dfrac{400 \times 300}{100}  \bigg)m

 \implies \rm 1320 \: m

 \therefore \rm Distance \: covered \: by \: the \: cycle \:  = 1320 \: m

Answered by Anonymous
8

AnswEr-:

  • \boxed {\dag{\mathrm {Distance \:Covered \:in\:making\:300\:Revolution \:by \:it's \:wheel\:=1.32 km \:or\:1320\:m }} }

Explanation-:

\mathrm { Given-:}

  • The diameter of a cycle wheel is 1.4 m.

  • The cycle has has maked 300 revolutions.

\mathrm { To\:Find-:}

  • Distance covered by wheel of Cycle in making  300 Revolution.

Solution of the Question-:

  • \dag{\mathrm { Radius-:\dfrac{Diameter}{2}}}

Here ,

  • The diameter of a cycle wheel is 1.4 m.

Now by putting known Values,

  • \longrightarrow{\mathrm { Radius-:\dfrac{1.4}{2}}}

  • \longrightarrow{\mathrm { Radius-:0.7 m}}

Therefore,

  • \boxed{\mathrm { Radius_{(Circle)}-:0.7 m}}

As , We know that ,

  • \underline{\boxed{\dag{\red{Circumference \:of \:Circle\:-:\: 2\times \pi  \times Radius }}}}

Here ,

  • Radius of Circle = 0.7 m

  •  \pi = \dfrac{22}{7}

Now By Putting known Values ,

  • \longrightarrow{\mathrm {Circumference_{Circle} =2 \times  \dfrac{22}{7} \times  0.7}}

  • \longrightarrow{\mathrm {Circumference_{Circle} =2 \times  \dfrac{22}{\cancel {7}} \times \cancel {0.7} }}

  • \longrightarrow{\mathrm {Circumference_{Circle} =2 \times  22 \times 0.1   }}

  • \longrightarrow{\mathrm {Circumference_{Circle} =44  \times 0.1   }}

  • \longrightarrow{\mathrm {Circumference_{Circle} =4.4 m  }}

Therefore,

  • \boxed{\mathrm {Circumference_{Circle} =4.4 m  }}

As , We know that ,

  • Distance  covered in one Revolution = Circumference of the wheel of Cycle.

Then ,

  • Distance covered in one Revolution of the wheel of cycle = Circumference of Wheel = 4.4 m

Therefore,

  • Distance covered in 300 revolution-:

  • \longrightarrow {\mathrm { 300 \times 4.4 } }

  • \longrightarrow {\mathrm { 1320 m }}

As , We know that ,

  • [ 1 km = 1000 m]

Then ,

  • \longrightarrow {\mathrm { \dfrac{1320}{1000}  } }

  • \longrightarrow {\mathrm { 1.32 km \:or\:1320\:m } }

Hence ,

  • \boxed {\dag{\mathrm {Distance \:Covered \:in\:making\:300\:Revolution \:by \:it's \:wheel\:=1.32 km \:or\:1320\:m }} }

____________________♡____________________

Attachments:
Similar questions