Math, asked by sophieasaha1, 1 month ago

The diameter of a cylindrical pot is 7 decimetre and height is 4 decimetre. The pot contains 108 litres of milk, How many litres of milk have to pour So that the jar will be filled up. (1 litre = 1 c. decimetre)​

Answers

Answered by mathdude500
4

Given :-

  • Diameter of cylindrical pot = 7 dm

  • Height of cylindrical pot = 4 dm

  • Amount of milk in cylindrical pot = 108 litres.

To Find :-

  • Amount of milk to poured in pot to filled it.

Formula Used : -

\purple{\boxed{ \bf \:Volume_{(Cylinder)} = \pi \:  {r}^{2}}}

\purple{\boxed{ \bf \:1 \: litre \:  =  \: 1000 \:  {cm}^{3} = 1 \:  {dm}^{3} }}

Solution :-

Given that,

  • Diameter of cylindrical pot, d = 7 dm

We know,

\purple{\boxed{ \bf \:radius \:  =  \: \dfrac{1}{2} \: diameter}}

It implies,

  • Radius of cylindrical pot, r = 3.5 dm

Also,

  • Height of cylindrical pot, h = 4 dm

So,

Volume of cylindrical pot is

\rm :\longmapsto\:Volume_{(Cylinder)} = \pi \:  {r}^{2}h

\rm :\longmapsto\:Volume_{(Cylinder)} = \dfrac{22}{7} \times 3.5 \times 3.5 \times 4

\rm :\implies\:Volume_{(Cylinder)} = 154 \:  {dm}^{3}

\bf\implies \:Volume_{(Cylinder)} =  154 \: litres

It means,

  • Capacity of cylindrical pot = 154 litres

Now,

  • Amount of milk in cylindrical pot = 108 litres

Thus,

Amount of milk to poured to filled the cylindrical pot is

\rm :\longmapsto\:Amount_{(milk \: to \: poured)} \:  = 154 - 108

\pink{\bf :\longmapsto\:Amount_{(milk \: to \: poured)} \:  = 46 \: litres}

Additional Information :-

\boxed{ \sf{ \: Volume_{(cuboid)} = lbh}}

\boxed{ \sf{ \: Volume_{(cube)} = {(edge)}^{3} }}

\boxed{ \sf{ \: Volume_{(cone)} = \dfrac{1}{3} \pi \: {r}^{2} h}}

\boxed{ \sf{ \: Volume_{(sphere)} = \dfrac{4}{3} \pi \: {r}^{3}}}

\boxed{ \sf{ \: Volume_{(hemi - sphere)} = \dfrac{2}{3} \pi \: {r}^{3}}}

\boxed{ \sf{ \: CSA{(cylinder)} = 2\pi \: rh}}

\boxed{ \sf{ \: CSA{(cone)} = \pi \: rl}}

\boxed{ \sf{ \: CSA{(cube)} = 4 \times {(edge)}^{2} }}

\boxed{ \sf{ \: CSA{(hemi - sphere)} = 2\pi {r}^{2} }}

\boxed{ \sf{ \: TSA{(cuboid)} = 2(lb + bh + hl)}}

\boxed{ \sf{ \: TSA{(cone)} = {6(edge)}^{2} }}

\boxed{ \sf{ \: TSA{(cone)} = \pi \: r(l + r)}}

\boxed{ \sf{ \: TSA{(cylinder)} = 2\pi \: r(h + r)}}

Similar questions