Math, asked by ayush7050, 1 year ago

the diameter of a garden roller is 1.4 m and it is 2m long. how much area will it cover in 50 revolutions ?

Answers

Answered by fiercespartan
17

Hey there!!

Garden roller is in the shape of a cylinder

The area of the garden roller = surface area of the cylinder

⇒ 2πrh

radius = 0.7 m ( Radius = Diameter ÷ 2 )

( 2 ) ( 22 ÷ 7 ) ( 7 ÷ 10 ) ( 2 )

( 2 ) ( 22 ) ( 1 ÷ 10 ) ( 2 )

( 2 ) ( 22 ) ( 1 ÷ 5 )

( 44 ÷ 5 )

8.8 m²

This is the area covered for one revolution

For 50 revolutions =

( 8.8 ) ( 50 )

The required answer is 440 m²

_______

Answered by lAnniel
2

\huge{\underline{\sf{Question :-}}}}

The diameter of a garden roller is 1.4 m and it is 2m long. How much area will it cover in 50 revolutions.

\huge{\underline{\sf{Answer :-}}}}

\sf Given\begin{cases} &\sf{Diameter\;of\;the\; garden\:roller,\:D\;=\be{1.4\:m}}\\&\sf{Width\;of\;the\;garden\: roller,\:h=\;\bf{2\:m}}\end{cases}\\ \\

\boxed{ \sf \red{  To \: Find : }}

✏ Area it will cover in 5 revolutions = ❓

\green{\underline\bold{We \:know\:,}}

✏ Radius, r = \frac{Diameter}{2}

✏ r = \frac{1.4}{2}

✏ r = 0.7 m

\green{\underline\bold{From\:the\:formula,}}

\boxed{ \sf \blue{Area \: of\:the\:roller=\: Curved\:surface\:area\:of\:the\:cylinder }}

= 2Πrh

= 2 × \frac{22}{7} × 0.7 × 2

= 8.8 m sq.

\green{\underline\bold{Now,}}

\boxed{ \sf \blue{ Area\: of \:the\: roller\: it\:will\:cover\: in\: 1 \:revolution=\:area\:of\:the\:roller }}

= 8.8 m sq.

\boxed{ \sf \blue{ Area\: of \:the\: roller\: it\:will\:cover\: in\:50\:revolutions= }}

= 8.8 × 50

= 440 m sq.

\pink{\underline\bold{∴The\:required\:answer\:is\: = \: 440\: m\: sq.}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions