Math, asked by singhbasant43668, 4 months ago

The diameter of a garden roller is 1.4m and it is 4m long. How much area will it cover in 5

revolutions? ​

Answers

Answered by AadityaSingh01
3

Given:-

  • Diameter of Garden roller is 1.4 m.

  • Height of Roller is 4 m.

  • Roller cover 5 revolution around the garden.

To Find:-

  • Area covered by Roller in 5 revolutions.

Solution:-

Here, Curved Surface Area of Roller ( Cylinder ) is 2πrh.

So, Radius of Roller ⇒ \dfrac{Diameter}{2}           ⇔ \dfrac{1.4}{2} m

                                 ⇒ 0.7 m

Height of roller ⇒ 4 m

Now, Curved Surface Area of Roller ⇒ 2πrh

                                                            ⇒ 2 × \dfrac{22}{7} × 0.7 × 4 m²

                                                            ⇒ 17.6 m²

∵ Curved Surface Area of Roller is 17.6 m².

So, Area covered by roller in 5 revolutions ⇒ 5 × Curved Surface Area of Roller

                                                                       ⇒ 5 × 17.6 m²

                                                                       ⇒ 88 m²

Hence, Area covered by roller in 5 revolutions is 88 m².

Some Important Terms:-

  • Total Surface Area of Cylinder = 2πr ( r + h )

  • Volume of Cylinder = πr²h

  • Volume of cone = \dfrac{1}{3} πr²h

  • Total Surface Area of Cone = πr ( l + r )

Answered by Jiya6282
0

\red{\textbf{Answer :-}}  88 {m}^{2}

\LARGE\textsf{Given :-}

\textsf{diameter of a garden roller is 1.4 m}

r = \LARGE \frac{1.4}{2}

 = 0.7m

\textsf{h= 4 m}

\textsf{now,}

\textsf{Curved surface = 2πrh}

2 \times \LARGE  \frac{22}{7} \small  \times 0.7 \times 4

 = 17.6 {m}^{2}

\textsf{Area covered = Curved surface × Number of revolutions</p><p>}

 = 17.6 \times 5 = 88

\red{\textbf{so , Area =}}  88 {m}^{2}

\red{\textbf{More information :-}}

  • Calculating a square area is as easy as multiplying the length by the width.

  • Calculating a square area is as easy as multiplying the length by the width.

  • surface area of a cylinder can be calculated with the height and radius using the formula 2 pi r^2 + 2 pi r h.
Similar questions