Math, asked by nawazahmed1357942, 1 year ago

the diameter of a metallic ball is 35 cm. what is the mass of the ball if the density of the metal is 8.9 gm per centimetre cube

Answers

Answered by Anonymous
23

\huge\underline\mathbb{SOLUTION:-}

Answer:

  • Mass of the volume = 199697.45 Gram.

Given:

  • Diameter of metallic ball = 35 Cm
  • Radius of metallic ball = \mathsf {\frac{35}{2} } = 17.5 Cm
  • Density of ball = 8.9 gram/cm³

Need To Find:

  • Mass of the ball = ?

Explanation:

\underline \mathsf \blue {Formula\:used\:here\: :-}

\implies \mathsf {Volume\:of\:sphere = \frac{4}{3}\pi r^3}

\implies \mathsf {Density = \frac{Mass}{Volume}}

Now, Calculate the volume of sphere.

\implies \mathsf {Volume\:of\:sphere = \frac{4}{3}\pi r^3}

\implies \mathsf {Volume\:of\:sphere = \frac{4}{3}\times 3.14\times 17.5\times 17.5}

\implies \mathsf {Volume\:of\:sphere = \frac{67313.75}{3} }

  • Volume of sphere = 22437.91 Cm³.

Now, We know that:

\implies \mathsf {Density = \frac{Mass}{Volume}}

\implies \mathsf {8.9 = \frac{Mass}{22437.91}}

\implies \mathsf {Mass = 199697.45\:gram\:(Approx)}

  • Hence,mass of the volume = 199697.45 Gram.
Answered by Anonymous
24

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

the diameter of a metallic ball is 35 cm. what is the mass of the ball if the density of the metal is 8.9 gm per centimetre cube

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{Given}}}}

  • Density of metallic ball = 8.9 gm/cm³
  • Diameter of metallic ball = 35 cm

Or,

  • Radius of metallic ball = 35/2 = 17.5 cm

\Large{\underline{\mathfrak{\bf{Find}}}}

  • Mass of metallic ball

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

Here, we can say that ,

Volume of Ball = Volume of sphere

we know,

\small\boxed{\sf{\pink{\:Volume_{Ball}\:=\:\dfrac{4\times \pi\times (radius_{Ball})^3}{3}}}} \\ \\ \small\sf{\:\:\:\:\:\:\:\:(keep\:value\:of\:radius)} \\ \\ \mapsto\sf{\:Volume_{Ball}\:=\:\dfrac{4\times \dfrac{22}{7}\times 17.5^3}{3}} \\ \\ \mapsto\sf{\:Volume_{Ball}\:=\:\dfrac{471625}{21}} \\ \\ \small\boxed{\mathfrak{\bf{\pink{\:Volume_{Ball}\:=\:22458.66\:cm^3}}}}

Again,

\small\boxed{\sf{\pink{\:Mass_{Ball}\:=\:Density\times Volume_{Ball}}}} \\ \\ \small\sf{\:(keep\:value\:of\:Density\:and\:Volume\:of\:Ball)} \\ \\ \mapsto\sf{\:Mass_{Ball}\:=\:8.9\times 22458.66} \\ \\ \small\boxed{\mathfrak{\bf{\pink{\:Mass_{Ball}\:=\:199879.17\:gm\:\:\:\:\:\:Ans}}}}

\Large{\underline{\mathfrak{\bf{Thus}}}}

  • Mass of metallic ball = 1,99,879.17 gm
Similar questions