Math, asked by beenabiju3232, 7 months ago

The diameter of a metallic.ball is 4.2 cm. what is the mass of the ball, if the density of the metal is 8.9g per cm3? ​

Answers

Answered by ItzDαrkHσrsє
37

\boxed{\mathfrak\purple{Mass  \: of  \: ball  \: is  \: 345.39 \: g}}

Given:

  • Diameter of metallic ball = 4.2cm.

To Find:

  • Mass of ball = ?

Solution:

Let's first of all find radius of metallic ball,

\star \:  \orange{\underline{\mathfrak{Radius  = }}}

 \\ :\implies\mathfrak{radius =  \frac{diameter}{2} } \\  \\  \\  \\  \\ :\implies\mathfrak{radius = \dfrac{\cancel{4.2}}{\cancel{2}}} \\  \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{:\implies\mathfrak\red{Radius  = 2.1cm}}

We know that;

\star \: \boxed{\mathfrak\green{Volume \:  of  \: Sphere \:  =  \:  \frac{4}{3} \pi \:  {r}^{3} }}

Substituting values,

 \\  \\  \\  \\ :\implies\mathfrak{ \frac{4}{3}  \times  \frac{22}{7}  \times ( {2.1)}^{3} } \\  \\  \\  \\  \\  \\ :\implies\mathfrak{ \frac{4}{3}  \times  \frac{22}{7}  \times 9.261} \\  \\  \\  \\  \\  \\  \\   \\  \\  \\ :\implies\mathfrak{ \frac{4}{3}  \times 22 \times 1.323} \\  \\  \\  \\ :\implies\mathfrak{4 \times 22 \times 0.441}  \\  \\  \\  \\  \\ :\implies\mathfrak{88 \times 0.441} \\  \\  \\  \\  \\  \\  \\  \sf\star\underbrace\pink{Volume \:  of  \: Sphere \:  =  \: 38.808g} \: \star

Now,

:\implies\mathfrak{Density \:  of  \: metal  \: per  \:  {m}^{3}  = 8.9g}

Placing values,

:\implies\mathfrak{38.808 \times 8.9} \\  \\  \\  \\  \\  \\  \\  \\ :\implies\mathfrak{345.39} \\  \\  \\  \\  \\  \\  \\  \\ \sf\star \: \underbrace\blue{Density \: of \: metal \: = \: 345.39g} \: \star

Hence,

  • Mass of metallic ball is 345.39g.
Answered by Rubellite
68

\large{\boxed{\bf{\red{Let's\:understand\:the\:concept\:first!!}}}}

In this question, the diameter and the density of a metallic ball is given.we need to find the mass of the ball.

To find the mass of the ball we should know the volume of the ball.

\large\star\:{\underbrace{\sf{\pink{Acknowledgement:}}}}\:\star

Radius of the sphere = {\boxed{\sf{\orange{ \dfrac{Diameter}{2}}}}}

Volume of the sphere = {\boxed{\sf{\orange{ \dfrac{4}{3} \pi r^{3}}}}}

Density of the sphere = {\boxed{\sf{\orange{ \dfrac{Mass}{Volume}}}}}

\large\star\:{\underbrace{\sf{\purple{Solution:}}}}\:\star

Let's find the volume first!!

Radius of the sphere = \displaystyle{\sf{ \dfrac{4.2}{2} = 2.1cm}}

Volume of the sphere = \displaystyle{\sf{ \dfrac{4}{3} \pi r^{3}}}

  • Substituting the values,

\implies{\sf{ \dfrac{4}{3} \times \dfrac{22}{7} \times (2.1)^{3}}}

\implies{\sf{ \dfrac{4}{3} \times \dfrac{22}{7} \times 2.1 \times 2.1 \times 2.1cm^{3}}}

\implies{\sf{38.808cm^{3}}}

{\underline{\sf{\blue{Hence,\:the\:volume\:is\:38.808cm^{3}}}}}

After that,

Density of the sphere = \displaystyle{\sf{ \dfrac{Mass}{Volume}}}

  • Substituting the values,

\implies{\sf{ 8.9g = \dfrac{Mass}{38.808}}}

\implies{\sf{ Mass = 38.808 \times 8.9g }}

\implies{\sf{ Mass = 345.3912g }}

{\boxed{\sf{\blue{Hence,the\:mass\:of\:metallic\:ball\:is\:345.39\:(approx.)}}}}

_____________________

Attachments:

vikram991: Fabulous Answer!!
Similar questions