Math, asked by dhirubhaibarsiya, 5 months ago

the diameter of a metallic ball is 5.6cm what is the mass of the ball ,if the density of the metal is 18 g per cm√3​

Answers

Answered by itsbiswaa
20

Answer:

Height of cane is 9.99 cm.

Volume of cane is 6153.84 cm³.

Step-by-step explanation:

Given:-

Curved surface area of a powder cane is 879.3 cm².

Diameter of the base is 28 cm.

To find:-

Height of cane.

Volume of cane.

Solution:-

Radius = Diameter/2

= 28/2

= 14

Radius of cane is 14 cm.

Let, Height of cane be h.

We know the shape of cane is cylinder.

\boxed{\sf \bold{Curved \: surface \: area \: of \: cylinder = 2 \pi r h}}

Curvedsurfaceareaofcylinder=2πrh

Where,

r is radius and h is height of cylinder.

Put r, h and curved surface area in formula :

\begin{gathered} \sf \longrightarrow 879.2 = 2\times \dfrac{22}{\cancel{7}} \times \cancel{14} \times h \\ \\ \end{gathered}

⟶879.2=2×

7

22

×

14

×h

\begin{gathered} \sf \longrightarrow 879.2 = 44 \times 2 \times h \\ \\ \end{gathered}

⟶879.2=44×2×h

\begin{gathered} \sf \longrightarrow 879.2 = 88 \times h \\ \\ \end{gathered}

⟶879.2=88×h

\begin{gathered} \sf \longrightarrow h = \dfrac{879.2}{88} \\ \\ \end{gathered}

⟶h=

88

879.2

\begin{gathered} \longrightarrow \purple{ \boxed{\sf \bold{h = 9.99}}\star} \\ \\ \end{gathered}

h=9.99

Height of cane is 9.99 cm.

\begin{gathered} \\ \end{gathered}

\boxed{\sf \bold{Volume \: of \: cylinder = \pi r^{2} h}}

Volumeofcylinder=πr

2

h

Put r and h in formula :

\begin{gathered} \sf \longrightarrow \dfrac{22}{7} \times (14)^{2} \times 9.99 \\ \\ \end{gathered}

7

22

×(14)

2

×9.99

\begin{gathered} \sf \longrightarrow \dfrac{22}{\cancel{7}} \times \cancel{14} \times 14 \times 9.99 \\ \\ \end{gathered}

7

22

×

14

×14×9.99

\begin{gathered} \sf \longrightarrow 22 \times 2 \times 14 \times 9.99 \\ \\ \end{gathered}

⟶22×2×14×9.99

\begin{gathered} \sf \longrightarrow 44 \times 14 \times 9.99 \\ \\ \end{gathered}

⟶44×14×9.99

\begin{gathered} \longrightarrow \red{\boxed{\sf \bold{6153.84}}\star} \\ \\ \end{gathered}

6153.84

Therefore,

Volume of cane is 6153.84 cm³.

Answered by Anonymous
1

\huge\mathcal{\fcolorbox{cyan}{black}{\pink{ᴀɴsᴡᴇʀ࿐}}}

Radius (r 1 ) of hemisphere =4.2 cm

Radius (r

2

) of cylinder =6 cm

Height (h) = ?

The object fromed by recasting the hemisphere will be same in volume.

So, Volume of sphere = Volume of cylinder

3

4

πr

1

3

=πr

2

2

h

3

4

π×(4.2)

3

=π(6)

2

h

3 × 36

4.2×4.2×4.2=h

h=(1.4)³ =2.74 cm

Therefore, the height of cylinder so formed will be 2.74 cm.

Similar questions