Math, asked by answerspleasesend, 7 months ago

The diameter of a pizza is 30 cm. What is the area (in cm2) of the upper surface of a sector of the pizza whose arc length is 8 cm?

Answers

Answered by gopikagopu5927
43

Answer:

60

Step-by-step explanation:

radius= diameter/2

          =30/2

          =15 cm

\frac{Area of sector}{Area of circle}  =  \frac{arc length}{circle circumference}

Area \ of sector=\frac{Arc length  *Area of circle}{circumference of circle}

                       =\frac{l *r}{2}

                       =\frac{8*15}{2}

                       =60 cm²

                         

Answered by anjalin
4

Answer:

The area (in cm2) of the upper surface of a sector of the pizza is 60cm^{2}

Step-by-step explanation:

Given:

The diameter of a pizza is 30 cm

Arc length is 8 cm

We need to find the area (in cm2) of the upper surface of a sector of the pizza.

As we know that

The ratio of area of sector and area of circle is equal to the ratio of the arclength and circumference.

A=\frac{l*r}{2}

The radius will be \frac{30}{2} =15

We get as

=\frac{8*15}{2} \\\\=60

Similar questions