Math, asked by yashbhatt8111, 4 months ago

The diameter of a right circular cone is 8 cm and its volume is 48 cm3. What is its height ?​

Answers

Answered by Dhruv2906
3

Answer:

Let h be the height of the cone.

Diameter = 8 cm

Radius = 4 cm

Volume = 48π cm

3

3

1

π×(4)

2

×h=48π

h=9 cm

Hence, the height of the cone is 9 cm.

Answered by Anonymous
9

Correct Question:-

  • The diameter of a right circular cone is 8 cm and its volume is 48 π cm3. What is its height ?

Given:-

  • Diameter of a right circular cone is 8 cm.
  • Volume of a right circular cone is 48 π cm³.

To find:-

  • Height of the cone.

Solution:-

Let,

  • the height of the cone be h.

Formula used:-

{\dag}\:{\underline{\boxed{\sf{\purple{Volume_{(cone)} = \dfrac{1}{3}\pi rh}}}}}

\tt\longrightarrow{\dfrac{1}{3}\pi \times 4^2 \times h = 48\pi}

\tt\longrightarrow{5.3\times h = 48}

\tt\longrightarrow{h = \dfrac{48}{5.3}}

\tt\longrightarrow{\boxed{\orange{h = 9\: cm}}}

Hence,

  • the height of the right circular cone is 9 cm.

More to know :-

\sf{Area\;of\;Rectangle\;=\;Length\;\times\;Breadth}

\sf{Area\;of\;Square\;=\;(Side)^{2}}

\sf{Area\;of\;Triangle\;=\;\dfrac{1}{2}\;\times\;Base\;\times\;Height}

\sf{Area\;of\;Parallelogram\;=\;Base\;\times\;Height}

\sf{Area\;of\;Circle\;=\;\pi r^{2}}

\sf{Perimeter\;of\;Rectangle\;=\;2\;\times\;(Length\;+\;Breadth)}

\sf{Perimeter\;of\;Rectangle\;=\;4\;\times\;(Side)}

\sf{Perimeter\;of\;Circle\;=\;2\pi r}

Similar questions