Math, asked by kiranbhutoria2743, 4 months ago

the diameter of a road roller is 90 cm and is 2m 10 CM in length. if it takes 400 revolution to level a playground, find the cost of levelling the ground at ₹2.25 per square meter.

Answers

Answered by Anonymous
67

Given :-

Diameter of the roller = 90cm

length= 2m 10 cm = 2.1 m

So , radius would be 45 cm or 0.45 m

To find :-

Find the cost of levelling the ground at ₹2.25 per square meter.

Solution :-

The part which will touch the ground will be the C.S.A. of roller

now , C.S.A. of roller = 2πrh

➞ 2 × (22/7) × 0.45 × 2.1

➞ 5.94 m²

It takes 400 revolutions , area of ground

➞ 5.94 × 400

➞ 2376 m²

Now cost to level = rate × area

➞ 2376 × 2.25

➞ 5346

➞ 5346 Rs.

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Answered by Anonymous
220

\Large\sf\red{Given:-}

The diameter of road roller = 90 cm

Length of road roller = 2m 10cm

\Large\sf\red{To\:find:-}

Cost of levelling the ground at Rs2.25 per square meter.

\Large\sf\red{Solution:-}

\sf\blue{Radius\: of \:road \:roller =\dfrac{D}{2}=\dfrac{90}{2}=45cm}

\sf\blue{Length \:of \:road \:roller \:, h = 2m 10cm = 210cm}

\sf\blue{Revolution = CSA \:of \:road \:roller}

\Large\sf\pink{Formula\: used = 2\pi rh\:(CSA\:of\:Cylinder)}

\implies\sf\orange{2\times \dfrac{22}{7}\times 45\times 210}

\sf\implies\orange{=59400cm^2}

\sf\blue{No.\: of \:revolutions = 400}

\sf\green{Area\: covered \:by \:roller\: in\: 400 \:revolutions = 400\times  59400cm^2= 23760000cm^2}

\Large\tt\pink{10000cm^2 = 1sqm}

\implies\sf\orange{\dfrac{23760000}{10000} = 2376m^2}

\sf\blue{Cost\: of \:levelling \:1sq.m\: = Rs2.25 = \dfrac{225}{100}Rs}

\sf\blue{Cost \:of \:levelling \:the\: play ground =}

\sf\implies\orange {\dfrac{2375\times 225}{100} }

\sf\implies\orange{Rs.5346}

\Large\sf\green{Therefore\:cost\:of\:levelling = Rs.5346}


Anonymous: Perfect !
Anonymous: Thankch ♡
Anonymous: Awesome
Anonymous: thankch♡
Itzcupkae: Awesome ANS ❤️
Anonymous: thankch ❤
Anonymous: Fantastic! ♡`
Anonymous: thankch♡
Similar questions