Math, asked by AyushYadavWeds, 4 months ago

the diameter of a roller 120 cm long is 84 CM if it take 500 complete revolution of a playground determine the cost of levelling it at the rate of 30 per square metre​

Answers

Answered by sweetsparkle19
4

Answer:

Clearly the roller is a right circular cylinder of height h=120 cm

and radius of its base =r=42 cm

∴ area covered by the roller in one revolution = curved surface area of the roller 

           =2×722×42×120cm2=31680cm2

so, area covered by the roller is 500 revolution = (31680×500)cm2

                    =100×10031680×500m2=1584m2

hence , cost of levelling the playground = 1584×10030=Rs475.20

Answered by thebrainlykapil
134

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • the diameter of a roller 120 cm long is 84 CM if it take 500 complete revolution of a playground determine the cost of levelling it at the rate of 30 per square metre

 \\  \\  \\  \\

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

Clearly, The roller is a right is a right circular cylinder of

  •  \sf\green{ Height\: =  \: \fbox \red{120cm} \: and \: }

  • \sf\green{Radius \:of \: it's \: base \:  = \: 82 \div 2 \:   =  \: \fbox \red{42cm  }}

 \\  \\  \\  \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

Area Covered by the roller in 1 revolution = Curved Surface Of The Roller

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: Area \: Covered \: in \: 1 \: Revolution \: = 2\pi \: × \: R\: × \: H }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{  2 \:  \times  \:  \frac{22}{ \cancel7}  \:  \times  \cancel{42} \:  \times  \: 120 }}

\qquad \quad {:} \longrightarrow \sf{\sf{  2 \:  \times  \:  {22} \:  \times  6 \:  \times  \: 120 }}

\quad {:} \longrightarrow \underline \red{\boxed{\sf{Area \: Covered \: in \: 1 \: Revolution \: = \: 31680 \:  {cm}^{2}   }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

So, Area Covered by the roller in 500 revolution =  \blue{\fbox \green{ \: 31680 \: ×  \: 500     }}   \: {cm}^{2}

\qquad \quad {:} \longrightarrow \sf{\sf{  \frac{31680 \: \times  \:  500}{100 \:  \times  \: 100} \:   {m}^{2}    }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{  \frac{3168 \cancel0 \: \times  \:   5 \cancel{00}}{10 \cancel0 \:  \times  \: 1 \cancel{00}} \:   {m}^{2}    }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{  \frac{3168  \: \times  \:    \cancel5 }{ \cancel{10}} \:   {m}^{2}    }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{  \frac{ \cancel{3168}  \:  }{ \cancel 2} \:   {m}^{2}   }}\\ \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{ \:Area \: Covered \: in \: 500 \: Revolution \: = \:1584{m}^{2}    }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Cost of levelling the playground :-

\qquad \quad {:} \longrightarrow \sf{\sf{ 1584 \:  \times  \:  \frac{30}{100}   }}\\ \\

\bf  \therefore \;Cost  \; of  \; Levelling= Rs. 475.20

 \\  \\  \\  \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ Cost \: of \: Levelling \: the \: Playground\: = \underline {\underline{ Rs. 475.20}}}\\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions
English, 4 months ago