Math, asked by Prabhnoor2345, 7 months ago

The diameter of a rubber ball is one-third of diameter of a plastic ball. Find the ratio of their surface areas.

please tell in 5 mins its very urgent

Answers

Answered by ranjanachaurasia6251
2

Answer:

let\:  \: the \: \:  diameter \:  \: of \:  \: plastic \:  \:ball \: = x \\ so \:  \: radius \:  \: of \:  \: plastic \:  \: ball \:  \:  =  \:  \:  \frac{x}{2}  \\ and \:  \: radius \:  \: of \:  \: rubber \:  \: ball \:  \:  =  \:  \:  \frac{x}{6}  \\ now \:  \: the \:  \: surface \:  \: area \:  \: of \:  \: sphere \:  \:  =  \:  \: 4\pi {r}^{2}  \\therefore \:  \: surface \:  \: area \:  \: of \:  \: plastic \:  \: ball \:  \:  =  \:  \: 4 \:  \times  \frac{22}{7}  \:  \times  \frac{ {x}^{2} }{ {2}^{2} }  \\ = 4 \:  \times  \frac{22}{7} \:  \times  \frac{ {x}^{2} }{4}  \:  =  \frac{22 {x}^{2} }{7}  \\ and \:  \: surface \:  \: area \:  \: of \:  \: rubber \:  \: ball \:  \:  =  \:  \: 4  \:  \times  \:  \frac{22}{7}  \:  \times  \frac{ {x}^{2} }{ {6}^{2} }  \:  \\  = 4 \:  \times  \frac{22}{7}   \times  \:  \frac{ {x}^{2} }{36} \:  =  \:  \frac{22 {x}^{2} }{63}  \\ so \:  \: ratio \:  \: of \:  \: their \:  \: surface \:  \: area \:  \:  =  \:  \:  \frac{22 {x}^{2} }{7} \frac{.}{.}  \frac{22 {x}^{2} }{63}  \\  =  \frac{22 {x}^{2} }{7}  \:  \:  \times  \:  \:   \frac{63}{22 {x}^{2} }  \:  \:  =  \:  \: 9

hope this answer will help you.

Answered by Anonymous
2

\huge\underline\bold\blue{AnswEr✓}

☞heyya...

see in the attachment pasted above

Attachments:
Similar questions