Math, asked by MsNameless, 4 months ago

The diameter of a sphere is decreased by 25 percent. By what per cent does its curved surface area decrease?​

Answers

Answered by itzrakesh55
4

Answer:

The diameter of a sphere is decreased by 25%. By what per cent does its curved surface area decrease? cm. Hence, the original curved surface area decreases by 43.75%.

plz refer the attachment to get it better

Attachments:
Answered by Anonymous
113

\large{\underline{\sf{\red{Answer:-}}}}

\large\boxed{\underline{{\rm 43.75 \% }}}

\large{\underbrace{\sf{\pink{Solution:}}}}

Let the,

  • Diameter of sphere be d.

  • Radius of sphere be r.

  • Original CSA = \rm{4\pi \: (\dfrac{d}{2})^{2}  =\pi d^{2} }

Now,

Diameter of the square is decreased by 25%

New diameter = \rm{d-\dfrac{25}{100} d=\dfrac{3d}{4}  }

                           \rm{d=(1-\dfrac{25}{100})d  }

                         = \rm{(\dfrac{100-25}{100}  )d }

                         = \rm{(\dfrac{75}{100}  )d }

                         = \rm{(\dfrac{3}{4}  )d }

New CSA (A) = \rm{A=4 \times \pi \times (\dfrac{3}{8} d)^{2} }

                     = \rm{A=4 \times \pi \times \dfrac{9}{64} d^{2} }

                     = \rm{A=\dfrac{9}{64} \pi  \:d^{2} }

Percentage of area decreased:-

\large\boxed{\underline{\purple{\rm \dfrac{Decrease\:in\:area}{Original\:area} \times 100 }}}

\red{\implies\:\:} \rm{\dfrac{A-A}{A}\times 100 \% }

\red{\implies\:\:} \rm{\dfrac{\pi \:d^{2}-\dfrac{9}{16} \pi \:d^{2}  }{\pi \:d^{2} }\times 100 \% }

\red{\implies\:\:} \rm{\dfrac{\pi \:d^{2}(1-\dfrac{9}{16} )  }{\pi \:d^{2} }\times 100 \% }

\red{\implies\:\:} \rm{(1-\dfrac{9}{16})\times 100 }

\red{\implies\:\:} \rm{\dfrac{16-9}{16}\times 100 \% }

\red{\implies\:\:} \rm{\dfrac{7}{16}\times 100 \% }

\red{\implies\:\:} \rm{\dfrac{7}{4}\times 25 \% }

\red{\implies\:\:} \rm{\dfrac{175}{4} \% }

\red{\implies\:\:} \rm{43.75 \% }

Brainliest plz ♥

_____________________________________

Similar questions