Political Science, asked by MrExtinct01, 6 months ago

The diameter of a sphere is decreased by 25percent.By what,t per cent does its curved surface area decrease?​

Answers

Answered by Rubellite
92

\large{\underbrace{\sf{\red{Answer:}}}}

\huge{\boxed{\sf{\orange{ 43 \dfrac{3}{4} \% \:or\: 43.75 \%}}}}

\large{\underbrace{\sf{\purple{Explanation:}}}}

Let the radius of the sphere be \displaystyle{\sf{ \dfrac{ \pi}{2}cm.}}

Then its diameter = \implies{\sf{ \big( \dfrac{ \pi}{2} \big) cm.}}

Curved surface area of the original sphere

⠀⠀:\implies{\sf{ 4 \pi \dfrac{r}{2}^{2} = \pi r^{2}cm^{2}}}

New diameter(decreased) of the sphere

⠀:\implies{\sf{ r-r \times \dfrac{25}{100}}}

⠀⠀:\implies{\sf{ r- \dfrac{r}{4}= \dfrac{3r}{4}}}

{ \therefore} Radius of the new sphere

:\implies{\sf{ \dfrac{1}{2} \big( \dfrac{3r}{4} \big) = \frac{3r}{8}cm }}

{ \therefore} New curved surface area of the sphere

:\implies{\sf{ 4\pi \big( \frac{3r}{8}cm \big) = \dfrac{9\pi r^{2}}{16}cm^{2}}}

{ \therefore} Decrease in the original curved surface area

:\implies{\sf{ \pi r^{2} - \dfrac{9 \pi r^{2}}{16}}}

:\implies{\sf{ \pi r^{2} - \dfrac{7 \pi r^{2}}{16}}}

{ \therefore} Percentage of decrease in the original curved surface area

:\implies{\sf{ \dfrac{\dfrac{7 \pi r^{2}}{16}}{ \pi r^{2}} \times 100 \%}}

\large{:}\implies{\boxed{\sf{\pink{ 43 \dfrac{3}{4} \%\:or\:43.75 \%}}}}

Hence, the original curved surface area decreases by 43.75%.


EliteSoul: Nice
Anonymous: Mesmerizing❤
Anonymous: Perfect!
Anonymous: Choo beautiful answer ♥️ ! :aarohi_rock:
mddilshad11ab: Awesome:)
TheMoonlìghtPhoenix: Marvellous Sushi!
Anonymous: Splendid! :D
Rubellite: Thank y'all!
Answered by ItzInnocentPrerna
8

\huge\underline{\mathbb\red{A}\green{N}\mathbb\blue{S}\purple{W}\mathbb\orange{E}\pink{R}}\:

Let D be the diameter of the sphere, and the radius of the sphere r is D2.

The curved surface area of the sphere is A=4πr2=4πD2=πD2.

Since the diameter is decreased by 25 , the new diameter is 75100×d=3d4.

New surface area =4πr2=4π(3d2⋅4)2=916πd2

Decrease in surface area =πd2−916πd2=716πd2

So the % decrease in Surface Area= DecreaseinsurfaceareaSurfacearea×100%

=7πd216πd2×100=716×100=43.75%

♡___ʍίနန ίηησɕεηϯ հεɾε___♡

Similar questions