Math, asked by ajinomotostuff, 18 days ago

The diameter of a wheel of a car is 42cm. Find the distance covered by the car during
the time in which the wheel makes 1000 revolutions.
HELP FAST PLEASE

Answers

Answered by mathdude500
28

\large\underline{\sf{Solution-}}

Given that,

Diameter of wheel of a car = 42 cm

So,

Radius of wheel of a car, r = 21 cm

Now, we know

Distance covered by wheel in 1 revolution is equals to circumference of the wheel

So,

\rm \: Distance \: covered \: in \: 1 \: revolution \:  =  \: 2\pi \: r \\

\rm \:  =  \: 2 \times \dfrac{22}{7}  \times 21 \\

\rm \:  =  \: 2 \times 22 \times 3 \\

\rm \:  =  \: 132 \: cm \\

Now,

\rm \: Distance \: covered \: in \: 1 \: revolution \:  =  \: 132 \: cm \\

So,

\rm \: Distance \: covered \: in \: 1000 \: revolution \:  =  \: 132 \times 1000 \\

\rm \: Distance \: covered \: in \: 1000 \: revolution \:  =  \: 132000 \: cm \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Answered by Anonymous
34

Information provided with us:

➪ The diameter of a wheel of a car .

\implies \sf \:42\: cm

What we have to calculate

➪ The required distance covered by the car during the time in which the wheel makes 1000 revolutions.

Note :

➪ Calculate first radius of wheel of car

Formula used

\clubsuit \: \rm  \: Radius \: of \:wheel   \: of  \: car

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\orange{ \bigg(\dfrac{Diameter  \: of \:  wheel  \: of  \: car}{2}\bigg)}}}\: \: \: \bigstar\\

Now

➡ Substitute the given values in above formula and solve

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\green{ \bigg(\dfrac{42}{2}\bigg)}}}\: \: \: \bigstar\\

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\red{21 \: cm}}}\: \: \: \bigstar\\

  \rm \therefore \: Thus  \: radius  \: of \:    wheel\:of \: car

   \implies\bigstar \:  \:   \sf\boxed{\bold{\gray{21 \:cm}}}\: \: \: \bigstar\\

Now

➪ Find circumference of wheel

Formula used

\clubsuit \: \rm  \: Circumference \: of \:wheel   \: of  \: car

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\orange{2\pi \: r}}}\: \: \: \bigstar\\

Where

➡ Value of π is taken as 22/7

➡ r stand for radius of wheel of car

Now

➡ Substitute the given values in above formula and solve

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\green{ \bigg(2 \times \dfrac{22}{7} \times 21\bigg) \: cm}}}\: \: \: \bigstar\\

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\pink{2 \times 22 \times 3 }}}\: \: \: \bigstar\\

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\red{132\: cm}}}\: \: \: \bigstar\\

  \rm \therefore \: Thus  \: circumference  \: of \:    wheel\:of \: car

   \implies\bigstar \:  \:   \sf\boxed{\bold{\gray{132 \:cm}}}\: \: \: \bigstar\\

Here

  • ➪ Covert 132 cm to m ,by dividing 132 by 100 we get

\implies \sf \: \dfrac{132}{100} \: = 1.32 \: m

Note

  • ➪ In 1 revolution the wheel of car covers a distance equal to its Circumference

Therefore

  \rm \therefore \: The  \: distance  \: covered \:by\: wheel\:of \: car\: in\:one \: revolution

   \implies\bigstar \:  \:   \sf\boxed{\bold{\gray{1.32 \:m}}}\: \: \: \bigstar\\

  \rm \: Now \: the  \: distance  \: covered \: by\: wheel\:of \: car\: in\:1000\: revolution

  \rm \implies \: (1.32 \times 1000)m

  \rm \implies \:1,320 \: m

We know that

  \rm \implies \: 1 \: km = 1000 \:m

So

  • ➪ By dividing 1,320 m by 1000 we get

  \rm \implies \:1.32 \: km

Thus

  \rm \therefore \: The  \: distance  \: covered \: by\: wheel\:of \: car\: in\:1000\: revolution \: is

  \longrightarrow\bigstar \:  \:   \sf\boxed{\bold{\orange{1.32 \: km}}}\: \: \: \bigstar\\

Similar questions