Physics, asked by hgulzah7407, 8 months ago

The diameter of a wire measured by a screw gauge is given by 0.012cm,1.015cm,1.018cm,1.013cm,1.017cm, respectively. Find the diameter of the wire, mean absolute error and percentage error.

Answers

Answered by DARLO20
34

\sf{\gray{\underline{\underline{\purple{GIVEN:-}}}}}

  • The diameter of a wire measured by a screw gauge is given by “0.012cm” , “1.015cm” , “1.018cm” , “1.013cm” and “1.017cm” respectively .

\sf{\gray{\underline{\underline{\purple{TO\: FIND:-}}}}}

  1. Mean Diameter of the wire .
  2. Mean Absolute error .
  3. Percentage error .

\sf{\gray{\underline{\underline{\purple{SOLUTION:-}}}}}

[1] MEAN DIAMETER :-

\orange\star\:\bf{\pink{\boxed{\blue{Mean\:Diameter(\overline{D})\:=\:\dfrac{D_1\:+\:D_2\:+\:D_3\:+\:D_4\:+\:D_5}{5}\:}}}}

Where,

  • \rm{D_1} = 0.012cm

  • \rm{D_2} = 1.015cm

  • \rm{D_3} = 1.018cm

  • \rm{D_4} = 1.013cm

  • \rm{D_5} = 1.017cm

\rm{\implies\:Mean\:Diameter(\overline{D})\:=\:\dfrac{0.012\:+\:1.015\:+\:1.018\:+\:1.013\:+\:1.017}{5}\:}

\rm{\implies\:\overline{D}\:=\:\dfrac{4.075}{5}\:}

\rm{\implies\:\overline{D}\:=\:\dfrac{4.075}{5}\:}

\rm{\purple{\implies\:\overline{D}\:=\:0.815\:cm}}

[2] MEAN ABSOLUTE ERROR :-

☃️ First of all, Calculate Absolute Error :-

\red\star\:\bf{\pink{\boxed{\blue{\triangle{D_1}\:=\:\left|D_1\:-\:\overline{D}\right|\:}}}}

\rm{\implies\:\triangle{D_1}\:=\:\left|0.012\:-\:0.815\right|\:}

\rm{\implies\:\triangle{D_1}\:=\:\left|-0.803\right|\:}

\rm{\green{\implies\:\triangle{D_1}\:=\:0.803\:cm}}

\red\star\:\bf{\pink{\boxed{\blue{\triangle{D_2}\:=\:\left|D_2\:-\:\overline{D}\right|\:}}}}

\rm{\implies\:\triangle{D_2}\:=\:\left|1.015\:-\:0.815\right|\:}

\rm{\green{\implies\:\triangle{D_2}\:=\:0.200\:cm}}

\red\star\:\bf{\pink{\boxed{\blue{\triangle{D_3}\:=\:\left|D_3\:-\:\overline{D}\right|\:}}}}

\rm{\implies\:\triangle{D_3}\:=\:\left|1.018\:-\:0.815\right|\:}

\rm{\green{\implies\:\triangle{D_3}\:=\:0.818\:cm}}

\red\star\:\bf{\pink{\boxed{\blue{\triangle{D_4}\:=\:\left|D_4\:-\:\overline{D}\right|\:}}}}

\rm{\implies\:\triangle{D_4}\:=\:\left|1.013\:-\:0.815\right|\:}

\rm{\green{\implies\:\triangle{D_4}\:=\:0.198\:cm}}

\red\star\:\bf{\pink{\boxed{\blue{\triangle{D_5}\:=\:\left|D_5\:-\:\overline{D}\right|\:}}}}

\rm{\implies\:\triangle{D_5}\:=\:\left|1.017\:-\:0.815\right|\:}

\rm{\green{\implies\:\triangle{D_5}\:=\:0.202\:cm}}

☃️ Now, to calculate Mean Absolute Error :-

\orange\star\:\bf{\pink{\boxed{\blue{Mean\:Absolute\:Error\:=\:\dfrac{\triangle{D_1}\:+\:\triangle{D_2}\:+\:\triangle{D_3}\:+\:\triangle{D_4}\:+\:\triangle{D_5}}{5}\:}}}}

\rm{\implies\:Mean\:Absolute\:Error\:=\:\dfrac{0.803\:+\:0.200\:+\:0.818\:+\:0.198\:+\:0.202}{5}\:}

\rm{\implies\:Mean\:Absolute\:Error\:=\:\dfrac{2.221}{5}\:}

\rm{\purple{\implies\:Mean\:Absolute\:Error\:=\:0.444\:cm}}

[3] PERCENTAGE ERROR :-

☃️ First of all, Calculate Relative Error :-

\red\star\:\bf{\pink{\boxed{\blue{Relative\:Error\:=\:\dfrac{Mean\:Absolute\:Error}{\overline{D}}\:}}}}

\rm{\implies\:Relative\:Error\:=\:\dfrac{0.444}{0.815}\:}

\rm{\green{\implies\:Relative\:Error\:=\:0.544\:cm}}

☃️ Now, to calculate Percentage Error :-

\orange\star\:\bf{\pink{\boxed{\blue{Percentage\:Error\:=\:Relative\:Error\:\times{100}\:}}}}

\rm{\implies\:Percentage\:Error\:=\:0.544\:\times{100}\:}

\rm\purple{\implies\:Percentage\:Error\:=\:544\%\:}

Similar questions