Math, asked by arundhati6161, 22 days ago

The
diameter of circle is 10 cm. Find
the length of the arc when the correspo-
nding central angle is
45
3) 210 4) 180
(π=3.14)​

Answers

Answered by Anonymous
16

GivEn:

  • Diameter = 10 cm

To find:

  • The length of the arc when the corresponding central angle is 45°?

Solution:

• Let's consider central angle as θ,

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

« Now, Finding radius of the circle,

Radius = Diameter/2

⇒ 10/2

⇒ 5 cm

∴ Hence, The radius of the circle is 5 cm.

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

Now, Let's find length of the arc,

As we know that,

  • Length of the arc = θ/360 × 2πr

⇒ 45/360 × 2 × 3.14 × 5

⇒ 45/360 × 31.4

⇒ 0.125 × 31.4

⇒ 3.925

∴ Hence, Length of the arc is 3.925.

⠀⠀━━━━━━━━━━━━━━━━━━━━━

More To know:

  • Area of Circle = πr²

  • TSA of cylinder = 2πr(r + h)

  • CSA of cylinder = 2πrh

  • Volume of cylinder = πr²h
Answered by SavageBlast
9

Given:-

  • Diameter of circle = 10 cm

  • Corresponding central angle = 45°

To Find:-

  • Length of the Arc

Formula Used:-

  • {\boxed{\bf{Radius=\dfrac{Diameter}{2}}}}

  • {\boxed{\bf{l=\dfrac{θ}{360}\times 2\pi r}}}

Solution:-

Firstly,

\sf :\implies\:Radius=\dfrac{Diameter}{2}

\sf :\implies\:Radius=\dfrac{10}{2}

\sf :\implies\:Radius=5\:cm

Now Using Formula,

\sf :\implies\:l=\dfrac{θ}{360}\times 2\pi r

Here,

  • θ = 45°

  • r = 5 cm

Putting values,

\sf :\implies\:l=\dfrac{45}{360}\times 2\times 3.14\times 5

\sf :\implies\:l=\dfrac{1}{8}\times 2\times 3.14\times 5

\sf :\implies\:l=\dfrac{31.4}{8}

\sf :\implies\:l=3.925\:cm

Hence, The length of the Arc is 3.925 cm.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions