Math, asked by gocoronago16, 4 months ago

the diameter of right circular cylinder is 7 cm and its height is 16 cm Bind
the total surface area of the cylinder?​

Answers

Answered by Aloneboi26
62

Answer:

\huge\bold\blue{Answer}

Step-by-step explanation:

Given :

Diameter of the Cylinder is 7 cm .

Height of Cylinder is 16 cm .

To Find :

Total Surface Area of Cylinder .

Solution :

\longmapsto\tt{Radius=\dfrac{7}{2}cm}

\longmapsto\tt{Height=16\:cm}

Using Formula :

\longmapsto\tt{T.S.A\:of\:Cylinder=2\pi{r(r+h)}}

Putting Values :

\longmapsto\tt{{\not{2}}\times\dfrac{22}{{\not{7}}}\times\dfrac{{\not{7}}}{{\not{2}}}\times\bigg(\dfrac{7}{2}+\dfrac{16}{1}\bigg)}

\longmapsto\tt{22\times\bigg(\dfrac{7+32}{2}\bigg)}

\longmapsto\tt{{\cancel{22}}\times\dfrac{39}{{\cancel{2}}}}

\longmapsto\tt{11\times{39}}

\longmapsto\tt{429\:{cm}^{2}}

So , The Total Surface Area of Cylinder is 429 cm² .

_________________________

C.S.A of Cylinder = 2πrh

T.S.A of Cylinder = 2πr(r+h)

Volume of Cylinder = πr²h

_________________________

Answered by AVENGERS789456
2

Answer:

⟼Radius=

2

7

cm

\longmapsto\tt{Height=16\:cm}⟼Height=16cm

Using Formula :

\longmapsto\tt\boxed{T.S.A\:of\:Cylinder=2\pi{r(r+h)}}⟼

T.S.AofCylinder=2πr(r+h)

Putting Values :

\longmapsto\tt{{\not{2}}\times\dfrac{22}{{\not{7}}}\times\dfrac{{\not{7}}}{{\not{2}}}\times\bigg(\dfrac{7}{2}+\dfrac{16}{1}\bigg)}⟼

7

22

×

2

7

×(

2

7

+

1

16

)

\longmapsto\tt{22\times\bigg(\dfrac{7+32}{2}\bigg)}⟼22×(

2

7+32

)

\longmapsto\tt{{\cancel{22}}\times\dfrac{39}{{\cancel{2}}}}⟼

22

×

2

39

\longmapsto\tt{11\times{39}}⟼11×39

\longmapsto\tt{429\:{cm}^{2}}⟼429cm

2

So , The Total Surface Area of Cylinder is 429 cm² .

_________________________

C.S.A of Cylinder = 2πrh

T.S.A of Cylinder = 2πr(r+h)

Volume of Cylinder = πr²h

Similar questions