Math, asked by SureshMishra306, 4 months ago

The Diameter of the base of a right circular cylinder is 42cm and its height is 10cm . Find the area of the curved surface and total surface area. ​

Answers

Answered by Anonymous
8

Diameter of the base of the cylinder =42 cm 

∴ r = radius of the base of the cylinder =21 cm 

 h = height of the cylinder =10cm  

∴ curved surface area of the cylinder =  2πrh

          = 2×722×10cm²

          = 2×22×3×10cm2=1320cm²

total surface area of the cylinder = 2πr(h+r)

             = 2×722×21×(10+21)cm²

            = 2×22×3×31cm2=4092 cm²

Answered by thebrainlykapil
17

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • The Diameter of the base of a right circular cylinder is 42cm and its height is 10cm . Find the area of the curved surface and total surface area.

━━━━━━━━━━━━━━━━━━━━━━━━━

 \\  \\

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

  • Diameter of the base of the Cylinder = 42cm
  • Height of the base of the Cylinder = 10cm

━━━━━━━━━━━━━━━━━━━━━━━━━

 \\

Radius of of the Cylinder =  {\boxed{ \bf { \frac{Diameter}{2} }}}  \\

\qquad \quad {:} \longrightarrow \sf{\sf{\frac{Diameter}{2}  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{\frac{42}{2}  \:  =  \:  \cancel\frac{42}{2}}}\\

Radius of the Cylinder = {\boxed{ \bf { 21cm }}}  \\

━━━━━━━━━━━━━━━━━━━━━━━━━

 \\  \\

\large\underline{ \underline{ \sf \maltese{ \: To \: Find :- }}}

  • Curved Surface of the Cylinder ?
  • Total Surface of the Cylinder ?

━━━━━━━━━━━━━━━━━━━━━━━━━

 \\  \\

\large\underline{ \underline{ \sf \maltese{ \: </strong><strong>Solution</strong><strong>:- }}}

 \underbrace\purple{\boxed{ \bf \green{Curved \: Surface \: area \: of \: Cyclinder }}} \\

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: C.S.A \: of \: a \: Cylinder \: = \:2\pi \:  \times  \: Radius \:  \times  \: Height    }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\bf{C.S.A \: of \: a \: Cylinder \: = \:2 \:  \times  \:  \frac{22}{7} \:  \times  \: 21\:  \times  \: 10     }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{C.S.A \: of \: a \: Cylinder \: = \:2 \:  \times  \:  \frac{22}{ \cancel7} \:  \times  \:  \cancel{21}\:  \times  \: 10     }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{C.S.A \: of \: a \: Cylinder \: = \:2 \:  \times  \: 22 \:  \times  \: 3\:  \times  \: 10     }}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{Curved \: Surface \: area \: of \: Cyclinder\: = \:    1320{cm}^{2}  }}}\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━

 \underbrace\purple{\boxed{ \bf \green{Total \: Surface \: area \: of \: Cyclinder }}} \\

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: T.S.A \: of \: a \: Cylinder \: = \:2\pi \:  \times  \: Radius \:  \times  \:(\:  Height \: + \: Radius \: )   }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\bf{T.S.A \: of \: a \: Cylinder \: = \:2 \:  \times  \:  \frac{22}{7} \:  \times  \: 21\:  \times  \: (\: 10   \: + \: 21\: )  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{T.S.A \: of \: a \: Cylinder \: = \:2 \:  \times  \:  \frac{22}{7} \:  \times  \: 21\:  \times  \:31  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{T.S.A \: of \: a \: Cylinder \: = \:2 \:  \times  \:  \frac{22}{\cancel7} \:  \times  \: \cancel21\:  \times  \:31  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{T.S.A \: of \: a \: Cylinder \: = \:2 \:  \times  \:  22 \:  \times  \:  \:  \times  \: 3\:  \times  \:31  }}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{Total  \: Surface \: area \: of \: Cyclinder\: = \:    4092{cm}^{2}  }}}\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ Curved \: Surface \: area \: of \: Cyclinder \: = \underline {\underline{ 1320{cm}^{2} }}}\\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ Total  \: Surface \: area \: of \: Cyclinder \: = \underline {\underline{4092{cm}^{2} }}}\\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions