Math, asked by akshatdelhi30, 10 months ago

The diameter of the base of a right circular cylinder is 35 m and its height is 21 m.
Find its curved surface area. please step by step

Answers

Answered by Anonymous
8

Given :

  • Diameter of the right circular cylinder = 35 m
  • Height of the cylinder = 21 m

To find :

  • Curved surface area of the cylinder.

Solution :

Formula Used :-

{\boxed{\bold{CSA\:of\: cylinder=2\pi\:r\:h}}}

Where,

  • r = Radius
  • h = Height

• Diameter = 35 m

• Height = 21 m

Then,

• Radius = diameter/2

→ Radius = (35/2 ) m

\implies\sf{CSA\:of\: cylinder=2\times\dfrac{22}{7}\times\dfrac{35}{2}\times\:21\:\:m^2}

\implies\sf{CSA\:of\: cylinder=22\times\:5\times\:21\:\:m^2}

\implies\sf{CSA\:of\: cylinder=2310\:\:m^2}

Therefore, the curved surface area of the cylinder is 2310 .

_______________

More information :-

  • TSA of cylinder = 2πr(h+r)
  • Volume of cylinder = πr²h
Answered by Anonymous
2

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{Curved \ surface \ area \ is \ 2310 \ m^{2}}

\sf\orange{Given:}

\sf{For \ right \ circular \ cylinder,}

\sf{\implies{Diametre (d)=35 \ m}}

\sf{\implies{Height (h)=21 \ m}}

\sf\pink{To \ find:}

\sf{Curved \ surface \ area.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Curved \ surface \ area \ of \ cylinder}

\sf{=2\pi\times \ r\times \ h}

\sf{...formula}

\sf{But \ 2r=d}

\sf{\implies{C.S.A.=\pi\times \ d\times \ h}}

\sf{\implies{C.S.A.=\frac{22}{7}\times35\times21}}

\sf{\implies{C.S.A.=22\times5\times21}}

\sf{\implies{C.S.A.=2310 \ m^{2}}}

\sf\purple{\tt{\therefore{Curved \ surface \ area \ is \ 2310 \ m^{2}}}}

Similar questions