Math, asked by smnaeemcool, 1 month ago

The diameter of the base of the cylinder is 28 cm and its height is 8cm. What is its volume?​

Answers

Answered by prasadanand76
3

Volume of a Cylinder = πh

 \frac{22}{7}  \times 14 \times 14 \times 8

NOTE= I TOOK RADIUS AS 14 BECAUSE D=RADIUS'S HALF

22*2*14*8=4928

So, The answer to your question is 4928

Answered by BrainlyRish
7

Given : The diameter of the base of the cylinder is 28 cm and its height is 8cm .

Exigency To Find : Volume of Cylinder.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀First Finding Radius of Cylinder to find Volume :

\dag\:\:\it{ As,\:We\:know\:that\::}\\

\qquad \dag\:\:\bigg\lgroup \sf{Radius _{(Cylinder)} \:: \dfrac{Diameter}{2}}\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here Diameter is 28 cm .

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \longmapsto \sf Radius = \dfrac{28}{2} \\

\qquad \longmapsto \sf Radius = \cancel {\dfrac{28}{2}} \\

\qquad \longmapsto \frak{\underline{\purple{\:Radius = 14 cm }} }\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Radius \:of\:Cylinder \: \:is\:\bf{\:\:14cm}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀Finding Volume of Cylinder :

\qquad \dag\:\:\bigg\lgroup \sf{Volume _{(Cylinder)} \:: \pi r^2 h}\bigg\rgroup \\\\

⠀⠀⠀⠀⠀Here r is the Radius , h is the Height & \pi =\dfrac{22}{7} .

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \longmapsto \sf Volume = \dfrac{22}{7} \times (14)^2 \times 8 \\

\qquad \longmapsto \sf Volume = \dfrac{22}{7} \times 196 \times 8 \\

\qquad \longmapsto \sf Volume = \dfrac{22}{\cancel {7}} \times \cancel {196}\times 8 \\

\qquad \longmapsto \sf Volume = 22 \times 28 \times 8 \\

\qquad \longmapsto \sf Volume = 616 \times 8 \\

\qquad \longmapsto \frak{\underline{\purple{\:Volume = 4928 cm^2 }} }\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:Volume \:of\:Cylinder \: \:is\:\bf{\:\:4928cm^2}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

\boxed{\begin{array}{cc}\bigstar$\:\underline{\textbf{Formulae Related to Cylinder :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base\:and\:top =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area =2 \pi rh\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Total \: Surface \: Area = 2 \pi r(h + r)\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\pi r^2h\end{array}}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Note : Kindly view this Answer in web :)

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions