Math, asked by awasthijaya2020, 4 months ago


The diameter of the moon is approximately one-fourth of the diameter of the earth
What fraction of the volume of the earth is the volume of the moon?

Answers

Answered by REDPLANET
19

\underline{\boxed{\bold{ \bigstar \; Question \; \bigstar }}}  

 \; \; \; \; \;

➠ The diameter of the moon is approximately one-fourth of the diameter of the earth . What fraction of the volume of the earth is the volume of the moon?

 \; \; \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \; \; \; \; \;

\underline{\boxed{\bold{ \bigstar \; Important \; Information \; \bigstar }}}  

 \; \; \; \; \;

❏ Sphere is 3-dimensional shape which closely resemble shape of a marble or a playing ball.

 \; \; \; \; \;

\star \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \boxed {\bold {\orange {\mathtt {\longmapsto Volume \; of \; Sphere = \dfrac{4}{3}\pi r^2 }}}}

 \; \; \; \; \;

❏ Usually all planets are considered to be sphere in fact their real shape may/may not be sphere. But for our easy calculations in mathematics we consider them sphere.

 \; \; \; \; \;

❏ If the ratio of two diameters are (x : y) then  the ratio of radius will be same or equal to (x : y).

 \; \; \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

  \; \; \; \; \;

\underline{\boxed{\bold{ \bigstar \; Given \; \bigstar }}}  

❏ Radius of moon =  ¹⁄₄ × (Radius of Earth)

 \; \; \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

  \; \; \; \; \;

\underline{\boxed{\bold{ \bigstar \; Answer \; \bigstar }}}  

Let's Start !

 \; \; \; \; \;

❖ Here is your answer :)

 \; \; \; \; \;

:\implies \dfrac{Volume \; of \; Moon}{Volue \; of \; Earth} = \dfrac{\frac{4}{3} \pi {(r_{moon})}^{3}  }{\frac{4}{3} \pi {(r_{earth})}^{3} }

:\implies \dfrac{Volume \; of \; Moon}{Volue \; of \; Earth} = \dfrac{{(r_{moon})}^{3}  }{{(r_{earth})}^{3} }

:\implies \dfrac{Volume \; of \; Moon}{Volue \; of \; Earth} = \dfrac{{(\frac{1}{4} \times r_{earth})}^{3}  }{{(r_{earth})}^{3} }

:\implies \dfrac{Volume \; of \; Moon}{Volue \; of \; Earth} = \dfrac{{\frac{1}{64} \times (r_{earth})}^{3}  }{{(r_{earth})}^{3} }

:\implies \dfrac{Volume \; of \; Moon}{Volue \; of \; Earth} = \dfrac{1}{64} \times \dfrac{{(r_{earth})}^{3}  }{{(r_{earth})}^{3} }

:\implies \dfrac{Volume \; of \; Moon}{Volue \; of \; Earth} = \dfrac{1}{64}

 \; \; \; \; \;

\boxed {\bold {\red{\mathtt {: \longmapsto \; Volume \; of \; Moon = \frac{1}{64} \times Volume \; of \; Earth } } } }

  \; \; \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

   \; \; \; \; \;

\boxed{\boxed{\bold{\therefore Volume \; of \; Moon = \frac{1}{64} \times Volume \; of \; Earth }}}

  \; \; \; \; \;

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Hope this helps u.../

【Brainly Advisor】

Similar questions