Math, asked by mahtoashok567, 1 month ago

The diameter of the sun is 1.4 x 10'm and the diameter of earth is 1.2756 x 10'm.
Find the ratio of diameter of sun to the diameter of earth.​

Answers

Answered by khushnoor33
2

Answer:

We know that : \sf{\sin\theta = Opposite\:Side/Hypotenuse}sinθ=OppositeSide/Hypotenuse

\longrightarrow\sf{a/b = Opposite\:Side/Hypotenuse}⟶a/b=OppositeSide/Hypotenuse

\bigstar★ From this Information ;

\longrightarrow⟶ Opposite Side = a \&& Hypotenuse = b

We can apply Pythagoras Theorem (Pythagoras Theorem states that Square of Hypotenuse is equal to Square of Other two Sides) in The triangle and find the measure of Adjacent Side

\boxed{\rm{(Hypotenuse)^2 = (Opposite\: Side)^2 + (Adjacent\: Side)^2}}

(Hypotenuse)

2

=(OppositeSide)

2

+(AdjacentSide)

2

\longrightarrow\rm{b^2 = a^2 + (Adjacent\: Side)^2\quad...\:\sf{Since\:Opposite\:Side = a\:\&\: Hypotenuse = b }}⟶b

2

=a

2

+(AdjacentSide)

2

...SinceOppositeSide=a&Hypotenuse=b

\longrightarrow\rm{(Adjacent\: Side)^2 = b^2 - a^2\quad...\:\sf{Subtracting\:a^2\:from\:both\:Sides\:of\:Equation}}⟶(AdjacentSide)

2

=b

2

−a

2

...Subtractinga

2

frombothSidesofEquation

\longrightarrow\rm{Adjacent\: Side = \sqrt{b^2 - a^2}\quad...\:\sf{Taking\:Square\:Root\:on\:both\:Sides\:of\:Equation}}⟶AdjacentSide=

b

2

−a

2

...TakingSquareRootonbothSidesofEquation

\bigstar★ Now, From the Calculations ;

\longrightarrow⟶ Opposite Side = a, Adjacent Side = \sqrt{\sf{b^2-a^2}}

b

2

−a

2

\&& Hypotenuse = b

\begin{gathered}\boxed{\begin{aligned}&\bullet\:\sin\theta = \rm{Opposite\:Side/Hypotenuse = a/b}\\&\bullet\:\cos\theta = \rm{Adjacent\:Side/Hypotenuse = \sqrt{b^2-a^2}/b}\\&\bullet\:\tan\theta = \rm{Opposite\:Side/Adjacent\:Side = a/\sqrt{b^2-a^2}}\\&\bullet\:\csc\theta = \rm{Hypotenuse/Opposite\:Side = b/a}\\&\bullet\:\sec\theta = \rm{Hypotenuse/Adjacent\:Side = b/\sqrt{b^2-a^2}}\\&\bullet\:\cot\theta = \rm{Adjacent\:Side/Opposite\:Side = \sqrt{b^2-a^2}/a}\\\end{aligned}}\end{gathered}

∙sinθ=OppositeSide/Hypotenuse=a/b

∙cosθ=AdjacentSide/Hypotenuse=

b

2

−a

2

/b

∙tanθ=OppositeSide/AdjacentSide=a/

b

2

−a

2

∙cscθ=Hypotenuse/OppositeSide=b/a

∙secθ=Hypotenuse/AdjacentSide=b/

b

2

−a

2

∙cotθ=AdjacentSide/OppositeSide=

b

2

−a

2

/a

\large{----------\textbf{ Alternate Method }----------}−−−−−−−−−− Alternate Method −−−−−−−−−−

We know that : \sf{\sin^2\theta+ \cos^2\theta=1}sin

2

θ+cos

2

θ=1

\longrightarrow\rm{(a/b)^2 + \cos^2\theta = 1\longrightarrow\rm{a^2/b^2 + \cos^2\theta = 1}\quad...\:\sf{Since\:\sin\theta\:is\:equal\:to\:a/b}}⟶(a/b)

2

+cos

2

θ=1⟶a

2

/b

2

+cos

2

θ=1...Sincesinθisequaltoa/b

\longrightarrow\rm{\cos^2\theta = 1 - a^2/b^2\quad...\:\sf{Subtracting\:a^2/b^2\:from\:both\:Sides\:of\:the\:Equation}}⟶cos

2

θ=1−a

2

/b

2

...Subtractinga

2

/b

2

frombothSidesoftheEquation

\longrightarrow\rm{\cos^2\theta = b^2/b^2 - a^2/b^2 = (b^2-a^2)/b^2\quad...\:\sf{Taking\:LCM\:of\:1\:and\:b^2}}⟶cos

2

θ=b

2

/b

2

−a

2

/b

2

=(b

2

−a

2

)/b

2

...TakingLCMof1andb

2

\longrightarrow\rm{\cos\theta = \sqrt{(b^2-a^2)/b^2} = \sqrt{b^2-a^2}/b\quad...\:\sf{Taking\:Square\:Root\:on\:both\:sides}}⟶cosθ=

(b

2

−a

2

)/b

2

=

b

2

−a

2

/b...TakingSquareRootonbothsides

We know that : \sf{\tan\theta = \sin\theta/\cos\theta}tanθ=sinθ/cosθ

\longrightarrow\rm{\tan\theta=a/b\div \sqrt{b^2-a^2}/b\quad...\:\sf{Since\:\sin\theta = a/b\:and\:\cos\theta = \sqrt{b^2-a^2}/b}}⟶tanθ=a/b÷

b

2

−a

2

/b...Sincesinθ=a/bandcosθ=

b

2

−a

2

/b

\longrightarrow\rm{\tan\theta=a/b\times b/\sqrt{b^2-a^2} = ab/b\sqrt{b^2-a^2} = a/\sqrt{b^2-a^2}}⟶tanθ=a/b×b/

b

2

−a

2

=ab/b

b

2

−a

2

=a/

b

2

−a

2

We know that : \sf{\csc\theta = 1/\sin\theta}cscθ=1/sinθ

\longrightarrow\rm{\csc\theta = 1\div a/b = 1\times b/a = b/a\quad...\:\sf{Since\:\sin\theta\:is\:equal\:to\:a/b}}⟶cscθ=1÷a/b=1×b/a=b/a...Sincesinθisequaltoa/b

We know that : \sf{\sec\theta = 1/\cos\theta}secθ=1/cosθ

\longrightarrow\rm{\sec\theta = 1\div \sqrt{b^2-a^2}/b} = b/\sqrt{b^2-a^2}\quad...\:\sf{Since\:\cos\theta\:is\:equal\:to\:\sqrt{b^2-a^2}/b}⟶secθ=1÷

b

2

−a

2

/b=b/

b

2

−a

2

...Sincecosθisequalto

b

2

−a

2

/b

We know that : \sf{\cot\theta = 1/\tan\theta}cotθ=1/tanθ

\longrightarrow\rm{\cot\theta = 1\div a/\sqrt{b^2-a^2} = \sqrt{b^2-a^2}/a\quad...\:\sf{Since\:\tan\theta\:is\:equal\:to\:a/\sqrt{b^2-a^2}}}⟶cotθ=1÷a/

b

2

−a

2

=

b

2

−a

2

/a...Sincetanθisequaltoa/

b

2

−a

2

\bigstar★ From the Calculations ;

\begin{gathered}\boxed{\begin{aligned}&\bullet\:\sin\theta = \rm{Opposite\:Side/Hypotenuse = a/b}\\&\bullet\:\cos\theta = \rm{Adjacent\:Side/Hypotenuse = \sqrt{b^2-a^2}/b}\\&\bullet\:\tan\theta = \rm{Opposite\:Side/Adjacent\:Side = a/\sqrt{b^2-a^2}}\\&\bullet\:\csc\theta = \rm{Hypotenuse/Opposite\:Side = b/a}\\&\bullet\:\sec\theta = \rm{Hypotenuse/Adjacent\:Side = b/\sqrt{b^2-a^2}}\\&\bullet\:\cot\theta = \rm{Adjacent\:Side/Opposite\:Side = \sqrt{b^2-a^2}/a}\\\end{aligned}}\end{gathered}

∙sinθ=OppositeSide/Hypotenuse=a/b

∙cosθ=AdjacentSide/Hypotenuse=

b

2

−a

2

/b

∙tanθ=OppositeSide/AdjacentSide=a/

b

2

−a

2

∙cscθ=Hypotenuse/OppositeSide=b/a

∙secθ=Hypotenuse/AdjacentSide=b/

b

2

−a

2

∙cotθ=AdjacentSide/OppositeSide=

b

2

−a

2

/a

Similar questions