Math, asked by jtsydudjgfjf600, 11 months ago

The diameters of a circles 4cm and 6cm respevtively find the ratio of their areas

Answers

Answered by Anonymous
7

\large\underline{\underline{\sf Given:}}

  • Diameter of first circle = 4cm

•°• Radius of first circle is \sf{r_1}= 2cm

  • Diameter of second circle = 6cm

•°• Radius of second circle \sf{r_2}= 3cm

\large\underline{\underline{\sf To\:Find:}}

  • Ratio of their area \sf{\frac{A_1}{A_2}}= ?

\large\underline{\underline{\sf Solution:}}

\large{\boxed{\sf Area\:of\:Circle=πr^2 }}

•°•

\large\implies{\sf \dfrac{A_1}{A_2}=\dfrac{πr_1^2}{πr_2^2} }

\large\implies{\sf \dfrac{A_1}{A_2}=\left(\dfrac{2}{3}\right)^2}

\large\implies{\sf \dfrac{A_1}{A_2}=\dfrac{4}{9}}

\Large\underline{\underline{\sf Answer:}}

•°• Ratio of \sf{A_1\:and\:A_2} is 4:9

Similar questions