Math, asked by miniprakash501, 4 months ago

The diameters of two cylinders having same height are in the ratio 2:3

a) What is the ratio of their radii ?

b) What is the ratio of their volumes?​

Answers

Answered by sushila9711046
1

Answer:

Given : diameters of two cylinders having the same height = 2 : 3 Read more on Sarthaks.com - https://www.sarthaks.com/209596/the-diameters-of-two-cylinders-having-the-same-height-are-in-the-ratio-2-3

Answered by MrAnonymous412
7

 \\   \large  \underline \bold{ \: Given :- } \\  \\

★ The diameters of two cylinders having same height are in the ratio 2:3.

 \\   \large  \underline \bold{ \: To  \: find :- } \\  \\

  • a) What is the ratio of their radii ?

  • b) What is the ratio of their volumes?

 \\   \large  \underline \bold{ \: Solution :- } \\  \\

 \\  \rm{a)} \sf \: The  \: diameters  \: of \:  two  \: cylinders \:  \\  \sf having \:  same \:  height  \: are  \: in  \: the  \: ratio \:  2:3. \\  \\

 \\  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{D_1}{D_2}  =  \frac{2}{3}  \\  \\

 \\  \\  \sf \:  \therefore \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \ \: \:  \:  \:  :  \implies \:  \frac{2r_1}{2r_2}  =  \frac{2}{3}  \\  \\

 \\  \\  \sf \:  \therefore \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \ \: \:  \:  \:  :  \implies \:   \bigg(\frac{r_1}{r_2} \bigg)  =  \frac{2}{3}  \\  \\

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \sf \underline{  \boxed{ \: \sf  \: \therefore \: Ratio \:  of  \: their  \: radii \:  = \:   \frac{2}{3}  \:  \:  \:  \:  \: }} \\  \\

b) Ratio of volume of cylinder

→ πr²_1 h / πr²_2 h

→( r1 / r2)² = (2/3)² = 4/9

Ratio of volume of cylinder is 4/9 .

Similar questions