the difference 2 number is 3 and the difference between there square is 54 what are the numbers
Answers
Answered by
22
Answer:-
Let the numbers be x and y. (x > y).
Given:
Difference between the numbers = 3
⟹ x - y = 3
⟹ x = 3 + y -- equation (1)
Also,
Difference between their squares = 54
⟹ x² - y² = 54
Substitute the value of x from equation (1).
⟹ (3 + y)² - y² = 54
- (a + b)² = a² + b² + 2ab
⟹ 3² + y² - 2 * 3 * y - y² = 54
⟹ 9 - 6y = 54
⟹ 9 - 54 = 6y
⟹ 45/6 = y
⟹ 15/2 = y
Substitute the value of y in equation (1).
⟹ x = 3 + 15/2
⟹ x = (6 + 15)/2
⟹ x = 21/2
Therefore, the two required numbers are 15/2 & 21/2.
Answered by
30
Given
- The difference 2 number is 3
- The difference between there square is 54
We Find
- Required numbers
We knows
- X - Y = 3
- X² - Y² = 54
We used
Theorm :- (a+b)² = a² + b² + 2ab
According to the question
we substitute the value of x ( From equation )
= 3² + y² - 2×3×y - y² = 54
= 9 - 6y = 54
= 6y = 54 - 9
= 6y = 45
= y = 45/6
= y = 15/2
And We substitute the value of y ( From equation )
= x = 3 + 15/2
= x = (6+15)/2
= x = 21/2
So, Required numbers is 21/2 and 15/2.
Similar questions