English, asked by jijasuresh9, 10 months ago

The difference between 12th and 8th term of an arithmetic sequence is 20. a)write the 30th term of the sequence? b)find the first term of the sequence?

Answers

Answered by mddilshad11ab
80

\sf\large\underline{Given:}

\rm{\implies Difference\:_{(12th-8th\: terms)}=20}

\sf\large\underline{To\: Find:}

\rm{\implies 30th\: terms\:of\:AP=?}

\rm{\implies first\: terms\:of\:AP=?}

\sf\large\underline{Solution:}

  • By applying formula to calculate the value a and d than find 30th and 1st terms of AP]

\sf\large\underline{Formula\: used:}

\rm{\implies T\:_{(n)}=a+(n-1)d}

\rm{\implies T\:_{(12)}=a+(12-1)d}

\rm{\implies T\:_{(12)}=a+11d}

\rm{\implies T\:_{(8)}=a+(8-1)d}

\rm{\implies T\:_{(8)}=a+7d}

  • Given difference here is 20]

\rm{\implies T_{(12)}-T\:_{(8)}=20}

\rm{\implies (a+11d)-(a+7d)=20----(1)}

\rm{\implies a+11d-a-7d=20}

\rm{\implies 4d=20}

\rm{\implies d=5}

  • Now, calculate the value of a here]

\rm{\implies Let\:1st\:term\:ap\:(a)=1}

  • putting the value of d in eq--(1)and calculate a here]

\rm{\implies (a+11d)-(a+7d)=20}

\rm{\implies a+55-a-35=20}

\rm{\implies 20=20}

\rm{\implies1=1}

  • By calculate the value of a=1 and d=5
  • Now, calculate 30th term here]

\rm{\implies T\:_{(n)}=a+(n-1)d}

\rm{\implies T\:_{(30)}=1+(30-1)5}

\rm{\implies T\:_{(30)}=1+29*5}

\rm{\implies T\:_{(30)}=1+145}

\rm{\implies T\:_{(30)}=146}

\sf\large{Hence,}

\rm{\implies 30th\:terms\:of\:AP=146}

\rm{\implies first\: terms\:of\:AP=1}

Similar questions