Math, asked by rajpriya131, 11 months ago

The difference between 2 numbers is 2 their product is 80 the numbers

Answers

Answered by Anonymous
9

Given :

  • The difference between 2 numbers is 2.
  • Product of the numbers is 80.

To Find :

  • The number

Solution :

Let the greater number be x.

Let the smaller number be y.

Case 1 :

Difference between greater number and smaller number is 2.

\sf{x-y=2}

\sf{x=y+2} ___(1)

Case 2 :

Product of the greater and smaller number is 80.

Equation :

\green{\implies} \sf{xy=80}

From (1), x = y + 2

\green{\implies} \sf{(y+2)y=80}

\green{\implies} \sf{y^2\:+\:2y=80}

\green{\implies} \sf{y^2\:+2y-80=0}

\green{\implies} \sf{y^2+10y-8y-80=0}

\green{\implies} \sf{y(y+10)-8(y+10)=0}

\green{\implies} \sf{(y+10)\:\:(y-8)\:=0}

\green{\implies} \sf{y+10=0\:\:or\:\:y-8=0}

\green{\implies} \sf{y=-10\:\:or\:\:y=8}

We have two cases here,

  • When, y = - 10
  • When, y = 8

Case 1 :

Substitute, y = - 10 in equation (1),

\green{\implies} \sf{x=y+2}

\green{\implies} \sf{x=(-10)+2}

\green{\implies} \sf{x=-10+2}

\green{\implies} \sf{x\:=-8}

\large{\boxed{\sf{\red{Greater\:Number\:=\:x\:=\:-8}}}}

\large{\boxed{\sf{\red{Smaller\:Number\:=\:y\:=\:-10}}}}

Case 2 :

Substitute, y = 8 in equation (1),

\green{\implies} \sf{x=y+2}

\green{\implies} \sf{x=8+2}

\green{\implies} \sf{x=10}

\large{\boxed{\sf{\purple{Greater\:Number\:=\:x\:=\:10}}}}

\large{\boxed{\sf{\purple{Smaller\:Number\:=\:y\:=\:8}}}}

Answered by Anonymous
18

\huge\underline\frak\red{To\:find}

The number

\huge\underline\frak\red{Solution}

\textbf{According to question}

\textbf{Let the numbers be x and y}

\implies\sf (x-y)=2 ------(i)

\implies\sf xy=80

\implies\sf x=\frac{80}{y}

Putting the value of x in equation (i)

\implies\sf x-y=2

\implies\sf \frac{80}{y}-y=2

\implies\sf \frac{80-y^2}{y}=2

\implies\sf y^2-2y-80=0

\implies\sf y^2+10y-8y-80=0

\implies\sf y(y+10)-8(y+10)=0

\implies\sf (y+10)(y-8)=0

In case : 1

y = -10

or

In case : 2

y = 8

Putting the value y = -10 in equation (i)

In case : 1

\implies\sf x-y=2

\implies\sf x-(-10)=2

\implies\sf x+10=2

\implies\sf x=-10+2=-8

putting the value y = 8 in equation (i)

In case : 2

\implies\sf x-y=2

\implies\sf x-8=2

\implies\sf x=8

Result

Number in case : 1

x = -8 and y = -10

Number in case : 2

x = 8 and y = 8

Similar questions