Math, asked by shambhavisingh566, 2 months ago

. The difference between a three-digit number and the
number formed by reversing its digits is divisible by
(A) 9
(B) 11
(C) Both 9 and 11
(D) Neither 9 nor 11​

Answers

Answered by mathdude500
5

Answer:

 \boxed{ \purple{ \bf \: option \: (c) \: is \: correct.}}

Step-by-step explanation:

\tt \: \: Let  \: us \:  consider \:  a \:  three  \: digit \:  number \:  as \:  abc

☆ Now, abc can be rewritten as

\tt \:  \longrightarrow \: abc \:  = 100a + 10b + c

☆ On reversing the digits, we get

\tt \:  \longrightarrow \: three \: digit \: number \: as \:  \bf{cba}

☆ Now, cba can be written as

\tt \:  \longrightarrow \: cba = 100c + 10b + a

\tt \:  \longrightarrow \:  \bold \red{Now}

\tt \:  \longrightarrow \: abc \:  -  \: cba

\tt \:  \longrightarrow \: 100a + 10b + c - (100c  +  10b + a)

\tt \:  \longrightarrow \: 100a + 10b \:  + c   - 100c - 10b - a

\tt \:  \longrightarrow \: 99a - 99c

\tt \:  \longrightarrow \: 99(a \:  -  \: c)

\tt\implies \:abc \:  -  \: cba \: is \: divisible \: by \: 99

\tt\implies \:abc - cba \: is \: divisible \: by \: both \: 9 \: and \: 11

Similar questions