Math, asked by mahatochnimai, 5 months ago

the difference between an exterior angle of a regilar polygon of n sides and an exterior angle of a regilar polygon (n+1) sides is equal to 18 °. Find the number of sides of each polygon. ​

Answers

Answered by nitya2736
1

Answer:

Sum of exterior angles of a polygon=360

An n sided polygon has n equal exterior angles.

n

360

n+1

360

=4

⇒360

[

n

1

n+1

1

]=4

⇒20

[

n(n+1)

n+1−n

]=1

⇒n

2

+n−20

⇒n

2

+5n−4n−20=0

⇒n(n+5)−4(n+5)=0

⇒n=4,-5

∴n=4

Answered by PharohX
2

Step-by-step explanation:

 \sf {  \large \bold\green{ \mathbb{GIVEN}}}

 \sf \: Difference  \:  \: in \:  \:  angles = 18 \degree

 \sf \: We  \: know \:  that \:  the  \: sum \:  of \\   \sf \: exterior \:  angles  \: of \:  polygon  = 360 \degree

 \rightarrow \sf \: According \:  to  \: Question  \leftarrow

 \sf \: difference \: in \: angle \: =  18 \degree \\  \alpha  -  \beta  = 18 \degree \\    \\ \sf \:  \:  \implies\frac{360}{n} -  \frac{360}{n + 1}   = 18 \\  \\  \sf \:  \implies360 \bigg( \frac{1}{n}  -  \frac{1}{n + 1}  \bigg) = 18 \\  \\  \sf \implies \:  \frac{n + 1 - n}{n(n + 1)}  =  \frac{18}{360}  \\  \\  \sf \implies \:  \frac{1}{n(n + 1)}   =  \frac{1}{20}   \:  \:  \: \\  \\  \sf \:  \implies \: n(n + 1) = 20  \\  \\    \sf \implies \:  {n}^{2}  + n - 20 = 0 \\  \\  \sf \implies \:  {n}^{2}  + 5n - 4n - 20 = 0 \\  \\  \sf \implies n(n + 5) - 4(n + 5) = 0 \\  \\  \sf \implies (n + 5)(n - 4) = 0 \\  \\ \sf \implies  n = 4 \:  \: or \:  - 5

 \sf \implies since \: number \: of \: sides \: can \: not \: be \: in \: neg.

 \sf \implies  \: hence \:  \green{ \boxed { \sf \: n = 4}}

Similar questions