Math, asked by harsh123adatyamishra, 4 months ago

The difference between an exterior angle of
(n-1) sided regular polygon and an exterior
angle of (n + 2) sided regular polygon is 6º.
Find the value of n.​

Answers

Answered by PharohX
19

Answer:

 \sf \: ► \large \: GIVEN :  -

  • First polygon having sides (n-1)
  • Second polygon having side (n+2)

 \sf \: ► \large \: TO \:  \:  FIND :  -

  • Value of. (n)

 \sf \: ► \large \: SOLUTION :  -

  • It is given that polygon is regular then..
  • Sum of the exterior angles are equal to 360°

  \blue{\sf \: Sum  \: of \:  the \:  all \: exterior \:  angles = 360 \degree}

 \sf \: For \:  first \:  polygon  \: having \:  sides  \: (n-1)

 \sf \: THEN \:  one  \: exterior  \: angle \:  of  \: (n-1)  \: side

 \sf \:  \:  one  \: exterior  \: angle =  \frac{360}{n - 1}  \\

 \sf \: Similarly  \: for  \: the  \: side  \: (n+2)

 \sf \: one \: exterior \: angle \:  =  \frac{360}{n + 2}  \\

 \sf \: Now \:  According \:  to \:  the \:  Question  -

 \sf \: Difference \:  of  \: exterior  \: angles  \: is  \: 6°

 \sf \implies \:  \frac{360}{(n - 1)}  -  \frac{360}{(n + 2)}   = 6\\

 \sf \implies \:  360 \bigg(\frac{1}{(n - 1)}  -  \frac{1}{(n + 2)} \bigg)   = 6\\

 \sf \implies \:  360 \bigg(\frac{(n + 2) - (n - 1)}{(n - 1)(n + 2)}  \bigg)   = 6\\

 \sf \implies \:  360 \bigg(\frac{3}{(n - 1)(n + 2)}  \bigg)   = 6\\

 \sf \implies \: (n - 1)(n + 2) =  \frac{360 \times 3}{6}  \\

 \sf \implies \: (n - 1)(n + 2) =  180\\

 \sf \implies \:  {n}^{2} - n + 2n - 2  =  180\\

 \sf \implies \:  {n}^{2}  + n - 182 =  0\\

 \sf \implies \:  {n}^{2}  + 14n - 13n - 182 =  0\\

 \sf \implies \:  n( n+ 14) - 13(n  +  14) =  0\\

 \sf \implies \:  ( n+ 14)(n - 13) =  0\\

 \sf \: n = 13 \:  \: or \:  \: n =  - 14

 \sf \: But  \: sides \:  can't \:  be \:  negative

 \sf \:  \boxed{ \sf n = 13}

Similar questions